Skip to content

Latest commit

 

History

History
255 lines (180 loc) · 8.69 KB

File metadata and controls

255 lines (180 loc) · 8.69 KB

humanseg_server

Module Name humanseg_server
Category Image segmentation
Network hrnet
Dataset Baidu self-built dataset
Fine-tuning supported or not No
Module Size 159MB
Data indicators -
Latest update date 2021-02-26

I. Basic Information

  • Application Effect Display

    • Sample results:

  • Module Introduction

    • HumanSeg-server model is trained by Baidu self-built dataset, which can be used for portrait segmentation.

    • For more information, please refer to:humanseg_server

II. Installation

III. Module API Prediction

  • 1、Command line Prediction

  • 2、Prediction Code Example

    • Image segmentation and video segmentation example:

      import cv2
      import paddlehub as hub
      
      human_seg = hub.Module(name='humanseg_server')
      im = cv2.imread('/PATH/TO/IMAGE')
      res = human_seg.segment(images=[im],visualization=True)
      print(res[0]['data'])
      human_seg.video_segment('/PATH/TO/VIDEO')
      human_seg.save_inference_model('/PATH/TO/SAVE/MODEL')
    • Video prediction example:

      import cv2
      import numpy as np
      import paddlehub as hub
      
      human_seg = hub.Module('humanseg_server')
      cap_video = cv2.VideoCapture('\PATH\TO\VIDEO')
      fps = cap_video.get(cv2.CAP_PROP_FPS)
      save_path = 'humanseg_server_video.avi'
      width = int(cap_video.get(cv2.CAP_PROP_FRAME_WIDTH))
      height = int(cap_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
      cap_out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height))
      prev_gray = None
      prev_cfd = None
      while cap_video.isOpened():
          ret, frame_org = cap_video.read()
          if ret:
              [img_matting, prev_gray, prev_cfd] = human_seg.video_stream_segment(frame_org=frame_org, frame_id=cap_video.get(1), prev_gray=prev_gray, prev_cfd=prev_cfd)
              img_matting = np.repeat(img_matting[:, :, np.newaxis], 3, axis=2)
              bg_im = np.ones_like(img_matting) * 255
              comb = (img_matting * frame_org + (1 - img_matting) * bg_im).astype(np.uint8)
              cap_out.write(comb)
          else:
              break
      
      cap_video.release()
      cap_out.release()
  • 3、API

    def segment(images=None,
                paths=None,
                batch_size=1,
                use_gpu=False,
                visualization=False,
                output_dir='humanseg_server_output')
    • Prediction API, generating segmentation result.

    • Parameter

      • images (list[numpy.ndarray]): Image data, ndarray.shape is in the format [H, W, C], BGR.
      • paths (list[str]): Image path.
      • batch_size (int): Batch size.
      • use_gpu (bool): Use GPU or not. set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU
      • visualization (bool): Whether to save the results as picture files.
      • output_dir (str): Save path of images, humanseg_server_output by default.
    • Return

      • res (list[dict]): The list of recognition results, where each element is dict and each field is:
        • save_path (str, optional): Save path of the result.
        • data (numpy.ndarray): The result of portrait segmentation.
    def video_stream_segment(self,
                            frame_org,
                            frame_id,
                            prev_gray,
                            prev_cfd,
                            use_gpu=False):
    • Prediction API, used to segment video portraits frame by frame.

    • Parameter

      • frame_org (numpy.ndarray): Single frame for prediction,ndarray.shape is in the format [H, W, C], BGR.
      • frame_id (int): The number of the current frame.
      • prev_gray (numpy.ndarray): Grayscale image of the previous network input.
      • prev_cfd (numpy.ndarray): The fusion image from optical flow and the prediction result from previous frame.
      • use_gpu (bool): Use GPU or not. set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU
    • Return

      • img_matting (numpy.ndarray): The result of portrait segmentation.
      • cur_gray (numpy.ndarray): Grayscale image of the current network input.
      • optflow_map (numpy.ndarray): The fusion image from optical flow and the prediction result from current frame.
    def video_segment(self,
                      video_path=None,
                      use_gpu=False,
                      save_dir='humanseg_server_video_result'):
    • Prediction API to produce video segmentation result.

    • Parameter

      • video_path (str): Video path for segmentation。If None, the video will be obtained from the local camera, and a window will display the online segmentation result.
      • use_gpu (bool): Use GPU or not. set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU
      • save_dir (str): Save path of video.
    def save_inference_model(dirname='humanseg_server_model',
                             model_filename=None,
                             params_filename=None,
                             combined=True)
    • Save the model to the specified path.

    • Parameters

      • dirname: Save path.
      • model_filename: Model file name,defalt is __model__
      • params_filename: Parameter file name,defalt is __params__(Only takes effect when combined is True)
      • combined: Whether to save the parameters to a unified file.

IV. Server Deployment

  • PaddleHub Serving can deploy an online service of for human segmentation.

  • Step 1: Start PaddleHub Serving

    • Run the startup command:

      • $ hub serving start -m humanseg_server
    • The servitization API is now deployed and the default port number is 8866.

    • NOTE: If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set.

  • Step 2: Send a predictive request

    • With a configured server, use the following lines of code to send the prediction request and obtain the result

    • import requests
      import json
      import base64
      
      import cv2
      import numpy as np
      
      def cv2_to_base64(image):
          data = cv2.imencode('.jpg', image)[1]
          return base64.b64encode(data.tostring()).decode('utf8')
      def base64_to_cv2(b64str):
          data = base64.b64decode(b64str.encode('utf8'))
          data = np.fromstring(data, np.uint8)
          data = cv2.imdecode(data, cv2.IMREAD_COLOR)
          return data
      
      # Send an HTTP request
      org_im = cv2.imread('/PATH/TO/IMAGE')
      data = {'images':[cv2_to_base64(org_im)]}
      headers = {"Content-type": "application/json"}
      url = "http://127.0.0.1:8866/predict/humanseg_server"
      r = requests.post(url=url, headers=headers, data=json.dumps(data))
      
      mask =cv2.cvtColor(base64_to_cv2(r.json()["results"][0]['data']), cv2.COLOR_BGR2GRAY)
      rgba = np.concatenate((org_im, np.expand_dims(mask, axis=2)), axis=2)
      cv2.imwrite("segment_human_server.png", rgba)

V. Release Note

  • 1.0.0

    First release

  • 1.1.0

    Added video portrait segmentation interface

    Added video stream portrait segmentation interface

  • 1.1.1

    Fix memory leakage problem of on cudnn 8.0.4