-
Notifications
You must be signed in to change notification settings - Fork 18
/
train_sparse.py
327 lines (251 loc) · 12.7 KB
/
train_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import time
import sys
import shutil
import random
import argparse
import numpy as np
import importlib
import torch
from torch import nn
import torch.utils.data
from dataloader.loader_discrete import DatasetDiscrete
import vis_utils
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
from scene_loss_utils import get_loss
sys.path.append('models')
from tf_visualizer import Visualizer as TfVisualizer
parser = argparse.ArgumentParser()
# data parameters
parser.add_argument('--data_path', type=str, default='/mnt/yanghaitao/Dataset/Scene_Dataset/3D-FRONT/src/dataset/data/')
parser.add_argument('--type', type=str, help='bedroom or living')
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='log', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--not_load_model', action='store_false', help='whether load checkpoint')
# training paramters
parser.add_argument('--max_epoch', type=int, default=1000, help='Epoch to run [default: 180]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 8]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--bn_decay_step', type=int, default=20, help='Period of BN decay (in epochs) [default: 20]')
parser.add_argument('--bn_decay_rate', type=float, default=0.5, help='Decay rate for BN decay [default: 0.5]')
parser.add_argument('--lr_decay_steps', default='400,700,1000', help='When to decay the learning rate (in epochs) [default: 80,120,160]')
parser.add_argument('--lr_decay_rates', default='0.1,0.1,0.1', help='Decay rates for lr decay [default: 0.1,0.1,0.1]')
# model parameters
parser.add_argument('--model_dict', type=str, default='model_scene_box_conv_sparse', help='model file name')
parser.add_argument('--variational', action='store_true', help='whether use VAE model')
parser.add_argument('--max_parts', type=int, default=120, help='maximum number of parts in one object')
parser.add_argument('--num_class', type=int, default=30, help='number of semantic class')
parser.add_argument('--num_each_class', type=int, default=4, help='number of each semantic class')
parser.add_argument('--adjust_kld', action='store_true', help='whether adjust kld for different epochs')
parser.add_argument('--weight_kld', type=float, default=0.001, help='weight of kldiv loss')
parser.add_argument('--weight_rep', type=float, default=1.0, help='weight of representation loss')
parser.add_argument('--kld_interval', type=int, default=50, help='interval of kldiv loss cycle')
parser.add_argument('--latent_dim', type=int, default=256, help='latent vector dimension')
parser.add_argument('--abs_dim', type=int, default=16, help='abs dimension')
parser.add_argument('--sparse_num', type=int, default=4, help='sparse linear layer parameter, switch to fully linear if 0')
parser.add_argument('--valid_threshold', type=float, default=0.5, help='output valid mask threshold')
parser.add_argument('--use_dumped_pairs', action='store_true', help='use the dumped pairs')
# general parameters
parser.add_argument('--vis', action='store_true', help='whether do the visualization')
parser.add_argument('--eval', action='store_true', help='whether switch to eval module')
parser.add_argument('--debug', action='store_true', help='whether switch to debug module')
parser.add_argument('--dump_results', action='store_true', help='whether dump predicted result')
args = parser.parse_args()
MAX_EPOCH = args.max_epoch
BATCH_SIZE = args.batch_size
BASE_LEARNING_RATE = args.learning_rate
BN_DECAY_STEP = args.bn_decay_step
BN_DECAY_RATE = args.bn_decay_rate
LR_DECAY_STEPS = [int(x) for x in args.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in args.lr_decay_rates.split(',')]
assert(len(LR_DECAY_STEPS)==len(LR_DECAY_RATES))
if args.adjust_kld:
assert(args.variational)
assert(args.type == 'bedroom' or args.type == 'living')
DATA_PATH = os.path.join(args.data_path, args.type)
TRAIN_DATASET = f'{args.data_path}/train_{args.type}.txt'
VAL_DATASET = f'{args.data_path}/val_{args.type}.txt'
# Prepare LOG_DIR
LOG_DIR = args.log_dir
MODEL_NAME = LOG_DIR.split('/')[-1]
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
DEFAULT_CHECKPOINT_PATH = os.path.join(LOG_DIR, 'checkpoint.tar')
CHECKPOINT_PATH = args.checkpoint_path if args.checkpoint_path is not None \
else DEFAULT_CHECKPOINT_PATH
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create dataset
train_dataset = DatasetDiscrete(DATA_PATH, TRAIN_DATASET)
val_dataset = DatasetDiscrete(DATA_PATH, VAL_DATASET)
num_workers = 0 if args.debug else 4
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, \
shuffle=True, num_workers=num_workers, worker_init_fn=my_worker_init_fn)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=BATCH_SIZE, \
shuffle=False, num_workers=num_workers, worker_init_fn=my_worker_init_fn)
# Initialize the model and optimizer
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
importlib.invalidate_caches()
model_dict = importlib.import_module(args.model_dict)
if args.variational:
net = model_dict.VAE(abs_dim=args.abs_dim, num_class=args.num_class, num_each_class=args.num_each_class, latent_dim=args.latent_dim,
use_dumped_pairs=args.use_dumped_pairs, variational=args.variational, log_dir=LOG_DIR)
else:
raise AssertionError('AE is currently not checked. Need to check model')
print(net)
if torch.cuda.device_count() > 1:
print("Let's use %d GPUs!" % (torch.cuda.device_count()))
net = nn.DataParallel(net)
net.to(device)
# Load the Adam optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=BASE_LEARNING_RATE, weight_decay=args.weight_decay)
# Load checkpoint if any
start_epoch = 0
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH) and args.not_load_model:
print('load checkpoint path: %s' % CHECKPOINT_PATH)
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
print("Successfully Load Model...")
# Helper for learning rate adjustment
def get_current_lr(epoch):
lr = BASE_LEARNING_RATE
for i,lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_weight_kld(epoch):
if epoch < args.kld_interval:
return (epoch / args.kld_interval) * args.weight_kld
else:
return args.weight_kld
# TFBoard visualizer
TRAIN_VISUALIZER = TfVisualizer(LOG_DIR, 'train')
VAL_VISUALIZER = TfVisualizer(LOG_DIR, 'val')
def train_one_epoch(epoch):
stat_dict = {}
adjust_learning_rate(optimizer, epoch)
if args.adjust_kld:
weight_kld = adjust_weight_kld(epoch)
else:
weight_kld = args.weight_kld
print('Current weight of kld loss: %f'% weight_kld)
net.train()
for batch_idx, batch_data_label in enumerate(train_dataloader):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
optimizer.zero_grad()
inputs_abs = batch_data_label['X_abs']
inputs_rel = batch_data_label['X_rel']
labels_abs = batch_data_label['X_abs']
labels_rel = batch_data_label['X_rel']
pred_abs, pred_rel, kldiv_loss = net(inputs_abs, inputs_rel)
total_loss, loss_dict, batch_index, matched_gt_idx, matched_pred_idx = get_loss(args.type, labels_abs, pred_abs, labels_rel, pred_rel,
num_class=args.num_class,
num_each_class=args.num_each_class,
)
if args.variational:
total_loss += weight_kld * kldiv_loss
loss_dict['kldiv_loss'] = weight_kld * kldiv_loss
loss_dict['loss'] += weight_kld * kldiv_loss
total_loss.backward()
optimizer.step()
# Accumulate statistics and print out
for key in loss_dict:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += loss_dict[key].item()
batch_interval = 50
if (batch_idx+1) % batch_interval == 0:
print('batch: %03d:' % (batch_idx+1), end=' ')
TRAIN_VISUALIZER.log_scalars({key: stat_dict[key] / batch_interval for key in stat_dict},
(epoch*len(train_dataloader)+batch_idx)*BATCH_SIZE)
for key in sorted(stat_dict.keys()):
print('%s: %f |' % (key, stat_dict[key] / batch_interval), end=' ')
stat_dict[key] = 0
print()
def eval_one_epoch(epoch, eval_mode):
assert eval_mode in ['val']
print('================ In ' + eval_mode + ' mode ================')
if args.adjust_kld:
weight_kld = adjust_weight_kld(epoch)
else:
weight_kld = args.weight_kld
stat_dict = {}
net.eval()
eval_dataloader = val_dataloader
for batch_idx, batch_data_label in enumerate(eval_dataloader):
if batch_idx % 10 == 0:
print('Eval batch: %d'%(batch_idx))
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
inputs_abs = batch_data_label['X_abs']
inputs_rel = batch_data_label['X_rel']
labels_abs = batch_data_label['X_abs']
labels_rel = batch_data_label['X_rel']
with torch.no_grad():
if args.variational:
pred_abs, pred_rel, kldiv_loss = net(inputs_abs, inputs_rel)
total_loss, loss_dict, batch_index, matched_gt_idx, matched_pred_idx = get_loss(args.type, labels_abs, pred_abs, labels_rel, pred_rel,
num_class=args.num_class,
num_each_class=args.num_each_class,
)
if args.variational:
total_loss += weight_kld * kldiv_loss
loss_dict['kldiv_loss'] = weight_kld * kldiv_loss
loss_dict['loss'] += weight_kld * kldiv_loss
# Accumulate statistics and print out
for key in loss_dict:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += loss_dict[key].item()
for key in sorted(stat_dict.keys()):
print('%s %s: %f' % (eval_mode, key, stat_dict[key] / (float(batch_idx+1))), end=' ')
mean_loss = stat_dict['loss']/float(batch_idx+1)
if args.debug:
import ipdb; ipdb.set_trace()
return mean_loss
if args.vis or args.eval or args.dump_results:
return mean_loss
# Log statistics
VAL_VISUALIZER.log_scalars({key: stat_dict[key] / float(batch_idx+1) for key in stat_dict},
(epoch+1) * len(train_dataloader) * BATCH_SIZE)
print()
return mean_loss
def train(start_epoch):
for epoch in range(start_epoch, MAX_EPOCH):
print('**** EPOCH %03d ****' % (epoch))
print('Current learning rate: %f'%(get_current_lr(epoch)))
if args.vis or args.eval:
val_loss = eval_one_epoch(epoch, 'val')
break
# Reset numpy seed.
# REF: https://github.com/pytorch/pytorch/issues/5059
''' here: problem: whether need to use seed '''
np.random.seed()
train_one_epoch(epoch)
# Eval every 10 epochs
if epoch == 0 or epoch % 10 == 9:
val_loss = eval_one_epoch(epoch, 'val')
# Save checkpoint
save_dict = {'epoch': epoch+1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': val_loss,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint.tar'))
if epoch > 0 and epoch % 100 == 99:
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint_eval%d.tar' % epoch))
if __name__ == '__main__':
train(start_epoch)