-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
229 lines (190 loc) · 6.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import pickle
import numpy as np
import torch
def angle2class(angle, num_class):
''' Convert continuous angle to discrete class
[optinal] also small regression number from
class center angle to current angle.
angle is from 0-2pi (or -pi~pi), class center at 0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N)
return is class of int32 of 0,1,...,N-1 and a number such that
class*(2pi/N) + number = angle
'''
angle = angle%(2*np.pi)
assert(angle>=0 and angle<=2*np.pi)
angle_per_class = 2*np.pi/float(num_class)
shifted_angle = (angle+angle_per_class/2)%(2*np.pi)
class_id = int(shifted_angle/angle_per_class)
residual_angle = shifted_angle - (class_id*angle_per_class+angle_per_class/2)
return class_id, residual_angle
def class2angle(pred_cls, residual, num_class):
''' Inverse function to angle2class
@Args:
pred_cls: (same_shape)
residual: (same_shape)
@Returns:
angle: (same_shape). 0~2pi
'''
angle_per_class = 2*np.pi/float(num_class)
angle_center = pred_cls * angle_per_class
angle = angle_center + residual
# if angle>np.pi: # turn 0~2pi to -pi to pi
# angle = angle - 2*np.pi
return angle
def parse_abs_angle(X_abs):
'''
@Args:
X_abs: (N, dim=16), only use X_abs[:, :9]. ATTENTION: each line should be valid
@Returns:
n1: (N, 2)
'''
N = X_abs.shape[0]
X_abs = X_abs[:, :9]
n1 = np.zeros((N, 2))
pred_class = np.argmax(X_abs[:, :8], axis=1)
for i, x_abs in enumerate(X_abs):
angle_recon = class2angle(pred_class[i], x_abs[8], num_class=8)
n1[i, 0] = np.cos(angle_recon)
n1[i, 1] = np.sin(angle_recon)
return n1
def parse_abs_angle_new(X_abs):
''' All array. faster
@Args:
X_abs: (N, dim=16), only use X_abs[:, :9]. ATTENTION: each line should be valid
@Returns:
n1: (N, 2)
'''
N = X_abs.shape[0]
X_abs = X_abs[:, :9]
n1 = np.zeros((N, 2))
pred_class = np.argmax(X_abs[:, :8], axis=1)
angle_recon = class2angle(pred_class, X_abs[:, 8], num_class=8)
n1[:, 0] = np.cos(angle_recon)
n1[:, 1] = np.sin(angle_recon)
return n1
def parse_abs_batch(X_abs):
'''
@Args:
X_abs: (B, N, dim=16), only use X_abs[:, :9].
mask: (B, N), whether abs is valid
@Returns:
X_abs_parse: (B, N, 9). n1(2) + t(3) + s(3) + indicator(1) = 9
'''
B, N = X_abs.shape[0], X_abs.shape[1]
n1 = torch.zeros((B, N, 2)).to(X_abs)
pred_cls = torch.argmax(X_abs[:, :, :8], dim=2)
angle = class2angle(pred_cls, X_abs[:, :, 8], num_class=8)
n1[:, :, 0] = torch.cos(angle)
n1[:, :, 1] = torch.sin(angle)
X_abs_parse = torch.cat((n1, X_abs[:, :, 9:]), dim=2)
# assert(X_abs_parse.shape == torch.Size([B, N, 9]))
return X_abs_parse
def translation2class(tij, halfRange, interval):
''' discretize tij to bin, d = interval, s = num_bins / 2
class_id:
[0, d): s, [d, 2d): s+1, ..., [(s-1)d, \inf): 2s-1
[-d, 0): 0, [-2d, -d): 1, ..., (-\inf, (s-1)d): s-1
residual:
always positive, distance to the interval point that is closest to 0,
e.g. -1.1 \in [-2, -1), residual = 0.1; 1.2 \in [1, 2), residual = 0.2
@Args:
tij: numpy array (same shape)
@Returns:
class_id/residual: (same shape)
'''
num_bins = 2 * halfRange / interval + 2
assert(num_bins % 2 == 0)
Iij = (tij >= 0).astype(np.float32)
class_id = np.minimum(np.abs(tij) // interval, num_bins / 2 - 1) + Iij * num_bins / 2
residual = np.abs(tij) - (class_id - Iij * num_bins / 2) * interval
return class_id.astype(np.int), residual
def class2translation(class_id, residual, halfRange, interval):
num_bins = 2 * halfRange / interval + 2
Iij = (class_id >= num_bins / 2).astype(np.float32) # 1 or 0
sij = (Iij - 0.5) * 2 # 1 or -1
tij = sij * ((class_id - Iij * num_bins / 2) * interval + residual)
return tij
def translation2disc(tij, halfRange, interval):
''' discretize tij to bin
@Args:
tij: numpy array (same shape)
@Returns:
Iij: (same shape), >0: 1; <=0: 0
class_id/residual: (same shape)
'''
Iij = (tij > 0) # indicator, 1(positive) or 0(zero or negative)
class_id = np.minimum(np.abs(tij), halfRange + interval - 1e-8) // interval
residual = np.abs(tij) - class_id * interval
return Iij.astype(np.float32), class_id.astype(np.int), residual
def disc2translation(Iij, class_id, residual, halfRange, interval):
sij = (Iij - 0.5) * 2 # 1 or -1
tij = sij * (class_id * interval + residual)
return tij
def data2box(dataline):
'''
@Args:
dataline: (10,) or (16,)
@Returns:
box: (4, 2). 4 corners
'''
abs_dim = dataline.shape[0]
assert(abs_dim == 10 or abs_dim == 16)
if abs_dim == 16:
location = dataline[9:11]
size = dataline[12:14]
angle_recon = utils.class2angle(np.argmax(dataline[:8]), dataline[8], num_class=8)
n1 = np.array([np.cos(angle_recon), np.sin(angle_recon)])
n2 = np.array([-n1[1], n1[0]])
elif abs_dim == 10:
location = dataline[3:5]
size = dataline[6:8]
n1 = dataline[:2]
n1 = n1 / np.linalg.norm(n1)
n2 = np.array([-n1[1], n1[0]])
p1 = location + size[1]*n1/2.0 + size[0]*n2/2.0
p2 = location + size[1]*n1/2.0 - size[0]*n2/2.0
p3 = location - size[1]*n1/2.0 - size[0]*n2/2.0
p4 = location - size[1]*n1/2.0 + size[0]*n2/2.0
box = np.stack((p1, p2, p3, p4))
return box
def params2box(ro, txy, sz):
'''
@Args: Only the first 2 columns are used
ro: (N, 2)
txy: (N, 2)
sz: (N, 2)
@Returns:
box: (N, 4, 2)
'''
location = txy[:, :2]
size = sz[:, :2]
n1 = ro[:, :2] / torch.norm(ro[:, :2], dim=1, keepdim=True)
n2 = torch.stack((-n1[:, 1], n1[:, 0]), dim=1)
p1 = location + size[:, 1:2]*n1/2.0 + size[:, 0:1]*n2/2.0 # (N, 2)
p2 = location + size[:, 1:2]*n1/2.0 - size[:, 0:1]*n2/2.0
p3 = location - size[:, 1:2]*n1/2.0 - size[:, 0:1]*n2/2.0
p4 = location - size[:, 1:2]*n1/2.0 + size[:, 0:1]*n2/2.0
box = torch.stack((p1, p2, p3, p4), dim=1) # (N, 4, 2)
return box
def params2box_batch(ro, txy, sz):
'''
@Args: Only the first 2 columns are used
ro: (B, N, 2)
txy: (B, N, 2)
sz: (B, N, 2)
@Returns:
box: (B, N, 4, 2)
'''
location = txy[:, :, :2]
size = sz[:, :, :2]
n1 = ro[:, :, :2] / torch.norm(ro[:, :, :2], dim=-1, keepdim=True)
n2 = torch.stack((-n1[:, :, 1], n1[:, :, 0]), dim=-1)
p1 = location + size[:, :, 1:2]*n1/2.0 + size[:, :, 0:1]*n2/2.0 # (B, N, 2)
p2 = location + size[:, :, 1:2]*n1/2.0 - size[:, :, 0:1]*n2/2.0
p3 = location - size[:, :, 1:2]*n1/2.0 - size[:, :, 0:1]*n2/2.0
p4 = location - size[:, :, 1:2]*n1/2.0 + size[:, :, 0:1]*n2/2.0
box = torch.stack((p1, p2, p3, p4), dim=2) # (B, N, 4, 2)
return box