forked from KirkGuo/HCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
215 lines (175 loc) · 7.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
import os
import warnings
import time
import pickle
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.utils.data import DataLoader
import config
from models import SimpleEncoderDecoderCat, UnifiedTriEncoderTransformer
from dataloader import MyDataset
from loss import Scheduler
from utils import save_checkpoint
from runner import EpochRunner
best_meteor = 0.0
scores_record = {
'epoch': [],
'train_loss': [],
'eval_loss': [],
'bleu4': [],
'meteor': [],
'rouge_l': [],
'cider': []
}
def main():
args = config.parse_config()
timestamp = int(time.time())
args.log_path = os.path.join(args.log_path, f'{timestamp}')
# make log dir
os.makedirs(args.log_path)
os.makedirs(os.path.join(args.log_path, 'model'))
os.makedirs(os.path.join(args.log_path, 'inferences'))
os.makedirs(os.path.join(args.log_path, 'partition'))
pickle.dump(args, open(os.path.join(args.log_path, 'config.pt'), 'wb'))
fo = open(os.path.join(args.log_path, 'parameters.txt'), "w")
for i in range(0, len(sys.argv)):
fo.write(sys.argv[i])
fo.close()
print(f'log path : {args.log_path}') if args.verbose else False
# set seed
if args.seed != -1:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.warm_up == -1:
args.warm_up = int(args.epoch/2)
n_gpus_per_node = torch.cuda.device_count()
args.world_size = n_gpus_per_node * args.world_size
# construct communication tunnel
if 'file:///' in args.dist_url:
timestamp = int(time.time())
args.dist_url += f'_{timestamp}'
# start distributed running
if args.world_size > 1 and args.gpu is None:
mp.spawn(main_worker, nprocs=n_gpus_per_node, args=(n_gpus_per_node, args))
else:
args.world_size = 1
main_worker(args.gpu, 1, args)
def main_worker(gpu, n_gpus_per_node, args):
global best_meteor
global scores_record
# distribute init
print(f"Use GPU: {gpu} for training") if args.verbose and gpu is not None else False
distributed = args.world_size > 1
args.gpu = gpu
if distributed:
args.rank = args.rank * n_gpus_per_node + gpu
dist.init_process_group('nccl', init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
# dataset
print('loading training dataset') if args.verbose else False
train_dataset = MyDataset(
args.train_dataset, args.text_feature, args.audio_feature, args.video_feature,
None, args.min_freq, args.modality,
max_len=args.seq_len, context_len= args.context_len,context=args.context, on_memory=args.on_memory
)
print('loading validation dataset') if args.verbose else False
test_dataset = MyDataset(
args.test_dataset, args.text_feature, args.audio_feature, args.video_feature,
train_dataset, args.min_freq, args.modality,
max_len=args.seq_len, context_len= args.context_len, context=args.context, on_memory=args.on_memory
)
# model
print('loading model') if args.verbose else False
if args.model == 'base':
target_model = SimpleEncoderDecoderCat
elif args.model == 'uni_tricoder':
target_model = UnifiedTriEncoderTransformer
else:
raise ValueError(f'Unknown model : {args.model}')
dim_feature = args.dim_audio if args.modality == 'a' else args.dim_video
model = target_model(
len(train_dataset.caption_vocab), dim_feature, args.dim_model, args.dim_ff,
args.head, args.n_layer, args.dropout, args.modality,
n_src_vocab=len(train_dataset.text_vocab),
args=args
)
torch.cuda.set_device(gpu)
model.cuda(gpu)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"total parameters : {total_params}") if args.verbose else False
print(f"trainable parameters : {trainable_params}") if args.verbose else False
if distributed:
args.batch_size = args.batch_size // n_gpus_per_node
args.n_worker = (args.n_worker + n_gpus_per_node - 1) // n_gpus_per_node
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
torch.backends.cudnn.benchmark = True
# dataloader
if distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = DataLoader(
train_dataset, batch_size=args.batch_size,
num_workers=args.n_worker, sampler=train_sampler, shuffle=train_sampler is None
)
test_loader = DataLoader(
test_dataset, batch_size=args.batch_size,
num_workers=args.n_worker,
)
# scheduler
print('loading scheduler') if args.verbose else False
scheduler = Scheduler(model, train_dataset.pad_idx, args)
# epoch runner
print('loading epoch runner') if args.verbose else False
trainer = EpochRunner(model, train_loader, test_loader, scheduler, args)
min_loss = float('inf')
# run epoch
for i in range(args.epoch):
if train_sampler:
train_sampler.set_epoch(i)
loss = trainer.train(i)
scores_record['epoch'].append(i)
scores_record['train_loss'].append(loss)
if i < args.warm_up:
scores_record['eval_loss'].append(0)
scores_record['bleu4'].append(0)
scores_record['meteor'].append(0)
scores_record['rouge_l'].append(0)
scores_record['cider'].append(0)
continue
scores = trainer.eval(i, min_loss)
min_loss = max(min_loss, scores['eval_loss'])
if scores:
best_meteor = max(best_meteor, scores['meteor'])
is_best = best_meteor == scores['meteor']
if args.save_model and (i % args.log_freq == 0 or is_best):
save_checkpoint({
'epoch': i,
'state_dict': model.state_dict(),
'scores': scores,
'optimizer': scheduler.optimizer.state_dict(),
}, is_best, i, args.log_path)
print('**************************************************************')
print(f'epoch({i}): scores {scores}') if args.verbose else False
print('**************************************************************')
for each in scores:
scores_record[each].append(scores[each])
if scores['bleu4'] != 0:
record_path = os.path.join(args.log_path, 'score_record'+str(i)+'.csv')
pd.DataFrame(scores_record).to_csv(record_path)
print(f'best_meteor : {best_meteor}')
if __name__ == '__main__':
main()