-
Notifications
You must be signed in to change notification settings - Fork 2
/
evaluate_v2.py
138 lines (106 loc) · 5.11 KB
/
evaluate_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""Evaluates the model"""
import argparse
import logging
import os
import numpy as np
import torch
from torch.autograd import Variable
import utils
import model_v5 as net
import data_loader_v5 as data_loader
import visualize
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='dataset/full_region_data',
help="Directory containing the dataset")
parser.add_argument('--model_dir', default='model',
help="Directory containing params.json")
parser.add_argument('--restore_file', default='best', help="name of the file in --model_dir \
containing weights to load")
def evaluate(model, critierion, dataloader, metrics, params):
"""Evaluate the model on `num_steps` batches.
Args:
model: (torch.nn.Module) the neural network
critierion: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to evaluation mode
model.eval()
# summary for current eval loop
summ = []
# compute metrics over the dataset
for data_batch, labels_type_batch, labels_region_batch in dataloader:
# move to GPU if available
if params.cuda:
data_batch, labels_type_batch, labels_region_batch = data_batch.cuda(
non_blocking=True), labels_type_batch.cuda(non_blocking=True), labels_region_batch.cuda(non_blocking=True)
# fetch the next evaluation batch
data_batch, labels_type_batch, labels_region_batch = Variable(data_batch), Variable(labels_type_batch), Variable(labels_region_batch)
# compute model output
output_type_batch, output_region_batch = model(data_batch)
loss1 = critierion(output_type_batch, labels_type_batch)
loss2 = critierion(output_region_batch, labels_region_batch)
loss = params.alpha * loss1 + (1 - params.alpha) * loss2
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_type_batch = output_type_batch.data.cpu().numpy()
labels_type_batch = labels_type_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric: metrics[metric](output_type_batch, labels_type_batch)
for metric in metrics}
summary_batch['loss'] = loss.item()
# output individual label performance
class_report = net.classification_report(output_type_batch, labels_type_batch, output_dict=True)
for key in class_report:
if len(key) == 1:
summary_batch['f1score-' + key] = np.float64(class_report[key]['f1-score'])
summ.append(summary_batch)
# compute mean of all metrics in summary
metrics_mean = {metric: np.mean([x[metric]
for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v)
for k, v in metrics_mean.items())
logging.info("- Eval metrics : " + metrics_string)
return metrics_mean
if __name__ == '__main__':
"""
Evaluate the model on the test set.
"""
# Load the parameters
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available() # use GPU is available
# Set the random seed for reproducible experiments
# torch.manual_seed(230)
# if params.cuda:
# torch.cuda.manual_seed(230)
# Get the logger
utils.set_logger(os.path.join(args.model_dir, 'evaluate.log'))
# Create the input data pipeline
logging.info("Creating the dataset...")
# fetch dataloaders
dataloaders = data_loader.fetch_dataloader(['test'], args.data_dir, params)
test_dl = dataloaders['test']
logging.info("- done.")
# Define the model
model = net.resnet50(params, 8).cuda() if params.cuda else net.resnet34(params, 8)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=False).to(device)
critierion = torch.nn.CrossEntropyLoss()
metrics = net.metrics
logging.info("Starting evaluation")
# Reload weights from the saved file
utils.load_checkpoint(os.path.join(
args.model_dir, args.restore_file + '.pth.tar'), model)
# Evaluate
test_metrics = evaluate(model, critierion, test_dl, metrics, params)
visualize.plot_individual_label_f1score(test_metrics,type='test')
save_path = os.path.join(
args.model_dir, "metrics_test_{}.json".format(args.restore_file))
utils.save_dict_to_json(test_metrics, save_path)