forked from shizhediao/Black-Box-Prompt-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_glue_discrete_GPT.py
850 lines (721 loc) · 38.1 KB
/
run_glue_discrete_GPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
import argparse
import logging
import torch
import math
import copy
import os
import random
import datasets
import pandas as pd
from datasets import load_dataset, load_metric
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from torch.optim import Adam
from transformers import (
AutoTokenizer,
SchedulerType,
set_seed,
)
from transformers.utils.versions import require_version
from torch.nn import CrossEntropyLoss
from loss import *
import wandb
import openai, time
import sys
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
DOMAIN_DATASET = ['CI', 'SE', 'RCT', 'HP']
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
LABEL2ID_CONFIG = {
"mnli": {" no": 0, " maybe": 1, " yes": 2},
"qqp": {" no": 0, " yes": 1},
"sst2": {" terrible": 0, " great": 1},
"mrpc": {" no": 0, " yes": 1},
"cola": {" no": 0, " yes": 1},
"wnli": {" no": 0, " yes": 1},
"qnli": {" yes": 0, " no": 1},
"rte": {" yes": 0, " no": 1},
"CI": {' background': 0, ' comparison': 1, ' extension': 2, ' future': 3, ' motivation': 4, ' use': 5},
"SE": {' comparison': 0, ' conjunction': 1, ' evaluation': 2, ' feature': 3, ' hyponym': 4, ' part': 5, ' function': 6},
"RCT": {' background': 0, ' conclusion': 1, ' method': 2, ' objective': 3, ' result': 4},
"HP": {' unhelpful': 0, ' helpful': 1},
"imdb": {" terrible": 0, " great": 1},
"cr": {" terrible": 0, " great": 1},
}
LABEL_CONVERT = {
"mnli": {0: ' no', 1: ' maybe', 2: ' yes'},
"qqp": {0: ' no', 1: ' yes'},
"sst2": {0: ' terrible', 1: ' great'},
'mrpc': {0: ' no', 1: ' yes'},
'cola': {0: ' no', 1: ' yes'},
'wnli': {0: ' no', 1: ' yes'},
'qnli': {0: ' yes', 1: ' no'},
'rte': {0: ' yes', 1: ' no'},
'CI': {'Background': ' background', 'CompareOrContrast': ' comparison', 'Extends': ' extension', 'Future': ' future', 'Motivation': ' motivation', 'Uses': ' use'},
'SE': {'COMPARE': ' comparison', 'CONJUNCTION': ' conjunction', 'EVALUATE-FOR': ' evaluation', 'FEATURE-OF': ' feature', 'HYPONYM-OF': ' hyponym', 'PART-OF': ' part', 'USED-FOR': ' function'},
'RCT': {'BACKGROUND': ' background', 'CONCLUSIONS': ' conclusion', 'METHODS': ' method', 'OBJECTIVE': ' objective', 'RESULTS': ' result'},
'HP': {False: ' unhelpful', True: ' helpful'},
'imdb': {0: ' terrible', 1: ' great'},
'cr': {0: ' terrible', 1: ' great'},
}
TEMPLATE_CONFIG = {
"mnli": " entailment?",
"qqp": " equivalent?",
"sst2": " What is the sentiment?",
"mrpc": " equivalent?",
"cola": " correct?",
"wnli": " What is the relation?",
'qnli': " entailment?",
"rte": " entailment?",
"CI": " What is the intent?",
"SE": " What is the relation?",
"RCT": " What is the role?",
"HP": " Helpful?",
"sst2": " It was ",
"imdb": " It was .",
"cr": " It was ",
}
def solve_v_total_exact(prompt_emb):
k = 1
a, b = 0, 0
b = prompt_emb.max()
def f(v):
s = (prompt_emb - v).clamp(0, 1).sum()
return s - k
itr = 0
v = 0
while (1):
itr += 1
v = (a + b) / 2
obj = f(v)
if abs(obj) < 1e-3 or itr > 20:
break
if obj < 0:
b = v
else:
a = v
return v, itr
def constrainScoreByWholeExact(prompt_embeds):
for i in range(len(prompt_embeds)):
v, itr = solve_v_total_exact(prompt_embeds[i])
prompt_embeds[i].sub_(v).clamp_(0, 1)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument("--model_name_or_path", type=str, default='text-babbage-001', help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument("--task_name", type=str, default=None, help="The name of the glue task.", choices=list(task_to_keys.keys()))
parser.add_argument("--file_name", type=str, default=None, help="The name of the domain-specific task.")
parser.add_argument("--low_resource", action="store_true")
parser.add_argument("--ce_loss", default=True, type=bool, help="If True, will use crossentropy loss.")
parser.add_argument("--sample_size", type=int, default=10, help="IMPORTANT, sample size per batch")
parser.add_argument("--prompt_length", type=int, default=6)
parser.add_argument("--prompt_learning_rate", type=float, default=5e-5)
parser.add_argument("--prompt_search_space", type=int, default=20)
parser.add_argument("--num_train_epochs", type=int, default=30, help="Total number of training epochs to perform.")
parser.add_argument("--ckpt_path", type=str, default="./ckpts")
parser.add_argument("--std", type=float, default=0.01)
parser.add_argument("--margin", type=float, default=1)
parser.add_argument("--trial", action="store_true")
parser.add_argument("--learning_rate", type=float, default=1e-3, help="Initial learning rate (after the potential warmup period) to use.",)
parser.add_argument("--use_wandb", type=bool, default=True, help="Whether to run wandb.")
parser.add_argument("--cuda", type=int, default=0)
parser.add_argument("--max_length", type=int, default=450, help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."))
parser.add_argument("--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.")
parser.add_argument("--per_device_train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--per_device_eval_batch_size", type=int, default=4, help="Batch size (per device) for the evaluation dataloader.")
parser.add_argument("--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).")
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay to use.")
parser.add_argument("--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"])
parser.add_argument("--num_warmup_steps", type=int, default=100, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--k_shot", default=-1, type=int, help="-1 denotes full-shot")
parser.add_argument("--use_ngram", default=True, type=bool, help="If True, will extract ngrams and use them.")
parser.add_argument("--api_key", type=str, default="" , help="GPT-3 API KEY")
parser.add_argument("--api_limit", type=int, default=8000 , help="The limit of the GPT-3 API request")
args = parser.parse_args()
args.train_file = './dataset/' + args.file_name + '/train.csv' if args.file_name else None
args.validation_file = './dataset/' + args.file_name + '/dev.csv' if args.file_name else None
args.test_file = './dataset/' + args.file_name + '/test.csv' if args.file_name else None
sanity = not (args.task_name and args.file_name)
assert sanity
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
return args
def pmi():
args = parse_args()
result=[]
if args.file_name:
with open("./pmi/" + "pmi_" + args.file_name.lower() + "_gpt" + ".txt",'r') as f:
for line in f:
result.append(line.strip('\n'))
elif args.task_name:
with open("./pmi/" + "pmi_" + args.task_name.lower() + "_gpt" + ".txt",'r') as f:
for line in f:
result.append(line.strip('\n'))
unique = []
[unique.append(i) for i in result if not i in unique]
ngram_index_list = list(unique)
return ngram_index_list
ngram_list = pmi()
def create_batches(dataset, batch_size=2, shuffle=False):
if isinstance(dataset, dict):
dataset_dict = dataset
else:
dataset_dict = {'input': [], 'labels': []}
dataset_dict['input'] = dataset['input']
dataset_dict['labels'] = dataset['labels']
if shuffle:
dataset_dict = pd.DataFrame(dataset_dict)
dataset_dict = dataset_dict.sample(frac=1)
dataset_dict = dataset_dict.to_dict(orient='list')
batches = {'sentence': [], 'labels':[]}
for i in range(0,len(dataset_dict['input']),batch_size):
batches['sentence'].append(dataset_dict['input'][i: i + batch_size])
batches['labels'].append(dataset_dict['labels'][i: i + batch_size])
return batches
# @counter
def complete_gpt3(prompt, l, model_name, temp=0.0, num_log_probs=None, echo=False, n=None):
response = None
received = False
while not received:
try:
response = openai.Completion.create(engine=model_name, prompt=prompt, max_tokens=l, temperature=temp,
logprobs=100, echo=echo, stop='\n')
received = True
except:
error = sys.exc_info()[0]
if error == openai.error.InvalidRequestError:
print(f"InvalidRequestError\nPrompt passed in:\n\n{prompt}\n\n")
assert False
print("API error:", error)
time.sleep(1)
return response
def counter(func):
def wrapper(*args, **kwargs):
wrapper.count = wrapper.count + 1
res = func(*args, **kwargs)
if wrapper.count % 100 == 0:
print ("{0} has been used: {1}x".format(func.__name__, wrapper.count))
return res
wrapper.count = 0
return wrapper
@counter
def train_api_request(prompt, l, model_name, temp=0.0, num_log_probs=None, echo=False, n=None):
response=complete_gpt3(prompt, l, model_name, temp=temp, num_log_probs=num_log_probs, echo=echo, n=n)
return response
class ApiCallLimitError(Exception):
pass
def get_regular_label_probs(response, batch, labels, args, if_null=True, split="train"):
assert len(response['choices']) == len(batch)
label_probs = torch.zeros([len(response['choices']), 1, len(labels)])
all_missing_positions = []
for a, ans in enumerate(response['choices']):
for l, label in enumerate(labels):
if label in ans['logprobs']['tokens']:
label_probs[a,:,l] = np.exp(ans['logprobs']['token_logprobs'][0])
else:
position = (a, l)
all_missing_positions.append(position)
if len(all_missing_positions) > 0:
all_additional_prompts = []
for position in all_missing_positions:
which_sentence, which_label = position
missing_prompt = batch[which_sentence] + labels[which_label]
all_additional_prompts.append(missing_prompt)
additional_dataset = {'input': all_additional_prompts, 'labels': all_missing_positions}
batches = create_batches(additional_dataset, batch_size=len(batch[0]))
for m, missing_batch in enumerate(batches['sentence']):
if split == "train":
missing_response = train_api_request(missing_batch, l=0, model_name=args.model_name_or_path, num_log_probs=1, echo=True)
else:
missing_response = complete_gpt3(missing_batch, l=0, model_name=args.model_name_or_path, num_log_probs=1, echo=True)
for idx, missing_ans in enumerate(missing_response['choices']):
which_sentence, which_label = batches['labels'][m][idx]
label_probs[which_sentence,:,which_label] = np.exp(missing_ans['logprobs']['token_logprobs'][-1])
assert (label_probs > 0).all(), "all should be populated with non-zero value"
if if_null:
return label_probs
label_probs = label_probs / torch.sum(label_probs, dim=2, keepdim=True)
return label_probs
def main():
args = parse_args()
openai.api_key = args.api_key
ce_loss_string = 'True' if args.ce_loss else 'False'
# specify a unique experiment_id for load_metric() otherwise will cause ERROR when having multiple run on a same server!
task_name = args.task_name if args.task_name else args.train_file
args.experiment_id = task_name + str(args.prompt_length) + str(args.prompt_learning_rate) +\
str(args.learning_rate) + str(args.num_train_epochs) \
+ str(args.seed) + str(args.prompt_search_space) + str(args.std) + ce_loss_string
if args.use_wandb:
args.group_name = "GPT3_BDPL_" + task_name
wandb.init(config=args, project="blackbox_prompt", group=args.group_name)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# download the dataset.
if args.task_name is not None:
if args.task_name in task_to_keys.keys():
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset("glue", args.task_name)
else:
raise(NotImplementedError)
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
if args.test_file is not None:
data_files["test"] = args.test_file
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if args.task_name:
label_to_id = LABEL2ID_CONFIG[args.task_name]
id_to_label = LABEL_CONVERT[args.task_name]
elif args.file_name:
label_to_id = LABEL2ID_CONFIG[args.file_name]
id_to_label = LABEL_CONVERT[args.file_name]
args.num_labels = len(label_to_id)
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently download model & vocab.
tokenizer = AutoTokenizer.from_pretrained('gpt2', use_fast=not args.use_slow_tokenizer)
args.device = torch.device("cuda", args.cuda)
prompt_length = args.prompt_length
hingeloss = MarginLoss(margin=args.margin, target=False)
ce_loss = CrossEntropyLoss()
# Preprocessing the datasets
if args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
def preprocess_function(examples):
if args.low_resource:
train_random_samples = random.sample(range(0, len(examples["label"])), len(examples["label"])//10)
for key in examples.keys():
examples[key] = [examples[key][k] for k in train_random_samples]
if args.file_name == 'HP':
for k in range(len(examples["text_a"])):
if examples["text_a"][k] == None:
examples["text_a"].remove(examples["text_a"][k])
examples["label"].remove(examples["label"][k])
break
if args.task_name is not None:
template_cfg = TEMPLATE_CONFIG[args.task_name]
elif args.file_name is not None:
template_cfg = TEMPLATE_CONFIG[args.file_name]
result= {'input':[]}
for i in range(len(examples[sentence1_key])):
if sentence2_key is None:
ori_sent_id = tokenizer.tokenize(examples[sentence1_key][i])[:400]
new_sent = tokenizer.convert_tokens_to_string(ori_sent_id)
result["input"].append('input: '+ new_sent + template_cfg + "\n" + "output:")
else:
result["input"].append('input: sentence one: '+ examples[sentence1_key][i] + ' sentence two: ' + examples[sentence2_key][i] + template_cfg + "\n" + "output:")
if args.task_name or args.file_name in DOMAIN_DATASET:
result['labels'] = [id_to_label[x] for x in examples["label"]]
else:
result['labels'] = examples["label"]
return result
def preprocess_function_k_shot(examples):
# Tokenize texts
random_indices = list(range(0, len(examples["label"])))
random.shuffle(random_indices)
new_examples = {}
for key in examples.keys():
new_examples[key] = []
label_count = {}
for index in random_indices:
label = examples['label'][index]
if label not in label_count:
label_count[label] = 0
if label_count[label] < args.k_shot:
for key in examples.keys():
new_examples[key].append(examples[key][index])
label_count[label] += 1
print("Finish few-shot sampling!")
result = preprocess_function(new_examples)
return result
with accelerator.main_process_first():
if args.k_shot >= 0:
# k-shot learning
raw_train_dataset_split = raw_datasets["train"].train_test_split(test_size=0.5)
raw_train_dataset = raw_train_dataset_split['train']
raw_eval_dataset = raw_train_dataset_split['test']
train_dataset = raw_train_dataset.map(
preprocess_function_k_shot,
batched=True,
batch_size=100000,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
eval_dataset = raw_eval_dataset.map(
preprocess_function_k_shot,
batched=True,
batch_size=100000,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
if args.task_name == 'mnli':
test_dataset = raw_datasets["validation_matched"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
test_dataset_mm = raw_datasets["validation_mismatched"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
elif args.task_name == 'qqp':
raw_valid_dataset_split = raw_datasets["validation"].train_test_split(test_size=0.025)
raw_test_dataset = raw_valid_dataset_split['test']
test_dataset = raw_test_dataset.map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
else:
test_dataset = raw_datasets["validation"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
else:
train_dataset = raw_datasets["train"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
eval_dataset = raw_datasets["validation"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
test_dataset = raw_datasets["test" if args.file_name != None else "validation"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
print("length of train data",len(train_dataset))
print("length of eval data",len(eval_dataset))
print("length of test data",len(test_dataset))
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
train_batches = create_batches(train_dataset, batch_size=args.per_device_train_batch_size, shuffle=True)
eval_batches = create_batches(eval_dataset, batch_size=args.per_device_eval_batch_size)
test_batches = create_batches(test_dataset, batch_size=args.per_device_eval_batch_size)
if args.task_name == 'mnli':
test_batches_mm = create_batches(test_dataset_mm, batch_size=args.per_device_eval_batch_size)
test_batches_mm = accelerator.prepare(test_batches_mm)
else:
test_batches_mm = None
eval_batches, test_batches = accelerator.prepare(eval_batches, test_batches)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_batches['sentence']) / args.gradient_accumulation_steps) # 106
args.max_train_steps = args.num_train_epochs * (num_update_steps_per_epoch)
# Get the metric function
if args.task_name is not None:
metric = load_metric("glue", args.task_name, experiment_id=args.experiment_id)
elif args.file_name in DOMAIN_DATASET:
metric = load_metric('f1', args.experiment_id)
else:
metric = load_metric('accuracy', args.experiment_id)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
best_eval_result = 0
best_epoch = 0
eval_results = []
test_results = []
args.loss_back_epoch = args.num_train_epochs
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num batches = {len(train_batches['sentence'])}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
prompt_search_space = args.prompt_search_space
prompts_probs = torch.FloatTensor([[1 / prompt_search_space] * prompt_search_space] * prompt_length)
prompts_probs.requires_grad = True
prompt_optimizer = Adam([ {
"params": [prompts_probs],
"weight_decay": 0,
"lr": args.prompt_learning_rate
},])
best_eval_result = 0.0
best_prompts_probs = None
print("----Optimizing black-box prompts----")
for epoch in range(args.num_train_epochs):
train_batches = create_batches(train_dataset, batch_size=args.per_device_train_batch_size, shuffle=True)
train_batches = accelerator.prepare(train_batches)
try:
for step in range(len(train_batches['sentence'])):
prompts_dist = torch.distributions.Categorical(prompts_probs)
with torch.no_grad():
if args.trial and step >= 100:
break
bsz = len(train_batches['sentence'][step])
labels = train_batches["labels"][step]
loss_list = []
prompts_discrete_indices_list = []
for k in range(args.sample_size):
prompts_discrete_indices = prompts_dist.sample()
prompts_discrete_indices_list.append(prompts_discrete_indices)
if args.use_ngram:
prompts_discrete_ngram_list = []
indices_list = prompts_discrete_indices.int().tolist()
for idx in indices_list:
prompts_discrete_ngram_list.append(ngram_list[idx])
prompts_discrete = ' '.join(prompts_discrete_ngram_list)
else:
indices_list = prompts_discrete_indices.int().tolist()
prompts_discrete = tokenizer.decode(indices_list, clean_up_tokenization_spaces=False)
batch = []
for i in range(len(train_batches['sentence'][step])):
batch.append('Definition: ' + prompts_discrete + '\t' + train_batches['sentence'][step][i])
responses = train_api_request(batch, l=1, model_name=args.model_name_or_path, num_log_probs=100, echo=False, n=None)
label_keys = list(label_to_id.keys())
converted_target = torch.tensor([label_to_id[label] for label in labels])
label_probs = get_regular_label_probs(responses, batch, label_keys, args, if_null = True)
logits = label_probs.squeeze()
pred = logits.argmax(dim=-1)
if args.ce_loss:
loss = ce_loss(logits.view(-1, args.num_labels), converted_target)
else:
loss = hingeloss(logits, converted_target)
loss_list.append(loss.item())
if train_api_request.count >= args.api_limit:
raise ApiCallLimitError()
loss_avg = sum(loss_list) / args.sample_size
prompt_optimizer.zero_grad()
derivative = copy.deepcopy([-1 / prompts_probs]) * args.sample_size
for k, prompts_discrete_indices in enumerate(prompts_discrete_indices_list):
for i in range(prompt_length):
derivative[k][i][prompts_discrete_indices[i]] *= -1
prompts_probs.grad = torch.zeros_like(prompts_probs)
for k in range(args.sample_size):
prompts_probs.grad += 1 / (args.sample_size - 1) * (loss_list[k] - loss_avg) * derivative[k]
torch.nn.utils.clip_grad_norm_(prompts_probs, 3)
prompt_optimizer.step()
constrainScoreByWholeExact(prompts_probs)
if step % args.gradient_accumulation_steps == 0 or step == len(train_batches['sentence']) - 1:
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
except ApiCallLimitError:
pass
eval_result = evaluate(args, eval_batches, metric, ce_loss, accelerator, epoch, best_epoch, best_eval_result, eval_results, prompts_probs=prompts_probs, prompt_length=prompt_length, tokenizer=tokenizer, linear_layer=None, prompts=None, prompt_embedding_fc=None, label_to_id = label_to_id)
if eval_result > best_eval_result:
best_eval_result = eval_result
best_prompts_probs = prompts_probs
if 'cuda' in str(args.device):
torch.cuda.empty_cache()
if train_api_request.count >= args.api_limit:
break
test(args, test_batches, metric, accelerator, epoch, test_results, prompts_probs=best_prompts_probs, prompt_length=prompt_length, tokenizer=tokenizer, linear_layer=None, prompts=None, label_to_id=label_to_id, test_batches_mm=test_batches_mm)
def evaluate(args, eval_batches, metric, ce_loss, accelerator, epoch, best_epoch, best_result, results, prompts_probs=None, prompt_length=None,tokenizer=None, linear_layer=None, prompts=None, prompt_embedding_fc=None, label_to_id=None):
if prompts_probs is not None:
prompts_discrete_indices = prompts_probs.argmax(1)
if args.use_ngram:
prompts_discrete_ngram_list = []
indices_list = prompts_discrete_indices.int().tolist()
for idx in indices_list:
prompts_discrete_ngram_list.append(ngram_list[idx])
prompts_discrete = ' '.join(prompts_discrete_ngram_list)
else:
indices_list = prompts_discrete_indices.int().tolist()
prompts_discrete = tokenizer.decode(indices_list, clean_up_tokenization_spaces=False)
for step in range(len(eval_batches['sentence'])):
if args.trial and step >= 100:
break
label = eval_batches["labels"][step]
if prompts_probs is not None:
batch = []
for i in range(len(eval_batches['sentence'][step])):
batch.append('Definition: ' + prompts_discrete + '\t' + eval_batches['sentence'][step][i])
else:
batch = eval_batches['sentence']
responses = complete_gpt3(batch, l=1, model_name=args.model_name_or_path, num_log_probs=100, echo=False, n=None)
label_keys = list(label_to_id.keys())
converted_target = torch.tensor([label_to_id[i] for i in label])
label_probs = get_regular_label_probs(responses, batch, label_keys, args, if_null = True, split="eval") # logits_only : True
logits = label_probs.squeeze()
eval_loss_c = ce_loss(logits.view(-1, args.num_labels), converted_target)
predictions = logits.argmax(dim=-1)
if len(predictions.shape) == 0: predictions = predictions.unsqueeze(0)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(converted_target),
)
if args.file_name in DOMAIN_DATASET:
eval_metric = metric.compute(average='macro')
else:
eval_metric = metric.compute()
logger.info("** eval **")
logger.info(f"epoch {epoch}: {eval_metric}")
if args.task_name == 'cola':
key = 'matthews_correlation'
elif args.task_name in ['mnli', 'sst2', 'wnli', 'rte', 'qnli'] or args.file_name in ['MR', 'CR']:
key = 'accuracy'
else:
key = 'f1'
eval_result = eval_metric[key]
results.append(eval_result)
return eval_result
def test(args, test_batches, metric, accelerator, epoch, results, prompts_probs=None, prompt_length=None, tokenizer=None, linear_layer=None, prompts=None, label_to_id=None, test_batches_mm=None):
if args.task_name == None or args.k_shot >= 0:
if prompts_probs is not None:
prompts_discrete_indices = prompts_probs.argmax(1)
if args.use_ngram:
prompts_discrete_ngram_list = []
indices_list = prompts_discrete_indices.int().tolist()
for idx in indices_list:
prompts_discrete_ngram_list.append(ngram_list[idx])
prompts_discrete = ' '.join(prompts_discrete_ngram_list)
else:
indices_list = prompts_discrete_indices.int().tolist()
prompts_discrete = tokenizer.decode(indices_list, clean_up_tokenization_spaces=False)
for step in range(len(test_batches['sentence'])):
if args.trial and step >= 100:
break
label = test_batches['labels'][step]
if prompts_probs is not None:
batch = []
for i in range(len(test_batches['sentence'][step])):
batch.append('Definition: ' + prompts_discrete + '\t' + test_batches['sentence'][step][i])
else:
batch = test_batches['sentence']
responses = complete_gpt3(batch, l=1, model_name=args.model_name_or_path, num_log_probs=100, echo=False, n=None)
label_keys = list(label_to_id.keys())
converted_target = torch.tensor([label_to_id[i] for i in label])
label_probs = get_regular_label_probs(responses, batch, label_keys, args, if_null = True, split="test") # logits_only : True
logits = label_probs.squeeze()
predictions = logits.argmax(dim=-1)
if len(predictions.shape) == 0: predictions = predictions.unsqueeze(0)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(converted_target),
)
if args.file_name in DOMAIN_DATASET:
test_metric = metric.compute(average='macro')
else:
test_metric = metric.compute()
if args.task_name == 'mnli':
for step in range(len(test_batches_mm['sentence'])):
label = test_batches_mm['labels'][step]
if prompts_probs is not None:
batch = []
for i in range(len(test_batches_mm['sentence'][step])):
batch.append('Definition: ' + prompts_discrete + '\t' + test_batches_mm['sentence'][step][i])
else:
batch = test_batches_mm['sentence']
responses = complete_gpt3(batch, l=1, model_name=args.model_name_or_path, num_log_probs=100, echo=False, n=None)
label_keys = list(label_to_id.keys())
converted_target = torch.tensor([label_to_id[i] for i in label])
label_probs = get_regular_label_probs(responses, batch, label_keys, args, if_null = True, split="test") # logits_only : True
logits = label_probs.squeeze()
predictions = logits.argmax(dim=-1)
if len(predictions.shape) == 0: predictions = predictions.unsqueeze(0)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(converted_target),
)
test_metric_mm = metric.compute()
if args.task_name == 'cola':
key = 'matthews_correlation'
elif args.task_name in ['mnli', 'sst2', 'wnli', 'rte', 'qnli'] or args.file_name in ['MR', 'CR']:
key = 'accuracy'
else:
key = 'f1'
test_result = test_metric[key]
results.append(test_result)
logger.info("** test **")
logger.info(f"epoch {epoch}: {test_metric}")
if args.use_wandb:
for key in test_metric.keys():
eval_key = 'Black_test_' + key
wandb.log({eval_key: test_metric[key]})
if args.task_name == 'mnli':
for key in test_metric_mm.keys():
eval_key = 'Black_test_' + key + '_mm'
wandb.log({eval_key: test_metric_mm[key]})
if __name__ == "__main__":
main()