-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
411 lines (346 loc) · 20.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import copy
import numpy as np
import torch
from torch.utils.data import DataLoader
import datasets
import util.misc as utils
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.incremental import generate_cls_order
from engine import evaluate, train_one_epoch, train_one_epoch_incremental
from models import build_model
from tensorboardX import SummaryWriter
def get_args_parser():
parser = argparse.ArgumentParser('Deformable DETR Detector', add_help=False)
parser.add_argument('--lr', default=2e-4, type=float)
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
parser.add_argument('--lr_backbone', default=2e-5, type=float)
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--lr_drop_balanced', default=10, type=int)
parser.add_argument('--lr_drop_epochs', default=None, type=int, nargs='+')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--sgd', action='store_true')
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
parser.add_argument('--ref_cls_loss_coef', default=2, type=float)
parser.add_argument('--ref_bbox_loss_coef', default=5, type=float)
parser.add_argument('--ref_giou_loss_coef', default=2, type=float)
parser.add_argument('--ref_loss_overall_coef', default=1, type=float)
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', default='./data/coco', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
# incremental parameters
parser.add_argument('--num_of_phases', default=2, type=int)
parser.add_argument('--cls_per_phase', default=10, type=int)
parser.add_argument('--data_setting', default='tfh', choices=['tfs', 'tfh'])
parser.add_argument('--seed_cls', default=123, type=int)
parser.add_argument('--seed_data', default=123, type=int)
parser.add_argument('--method', default='icarl', choices=['baseline', 'icarl'])
parser.add_argument('--mem_rate', default=0.1, type=float)
parser.add_argument('--debug_mode', default=False, action='store_true')
parser.add_argument('--balanced_ft', default=True, action='store_true')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
cls_order = generate_cls_order(seed=args.seed_cls)
if args.data_setting=='tfs':
total_phase_num = args.num_of_phases
elif args.data_setting=='tfh':
total_phase_num = args.num_of_phases
else:
raise ValueError('Please set the correct data setting.')
img_memory = {}
ann_memory = {}
imgToAnns_memory = {}
for phase_idx in range(total_phase_num):
print('training phase '+ str(phase_idx) + '...')
dataset_train = build_dataset(image_set='train', args=args, cls_order=cls_order, \
phase_idx=phase_idx, incremental=True, incremental_val=False, val_each_phase=False)
dataset_val = build_dataset(image_set='val', args=args, cls_order=cls_order, \
phase_idx=phase_idx, incremental=True, incremental_val=True, val_each_phase=False)
if phase_idx >= 1:
dataset_train_balanced = build_dataset(image_set='train', args=args, cls_order=cls_order, \
phase_idx=phase_idx, incremental=True, incremental_val=False, val_each_phase=False, balanced_ft=True)
dataset_val_old = build_dataset(image_set='val', args=args, cls_order=cls_order, \
phase_idx=0, incremental=True, incremental_val=True, val_each_phase=False)
dataset_val_new = build_dataset(image_set='val', args=args, cls_order=cls_order, \
phase_idx=1, incremental=True, incremental_val=True, val_each_phase=True)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
if phase_idx >= 1:
sampler_train_balanced = samplers.NodeDistributedSampler(dataset_train_balanced)
sampler_val_old = samplers.NodeDistributedSampler(dataset_val_old, shuffle=False)
sampler_val_new = samplers.NodeDistributedSampler(dataset_val_new, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
if phase_idx >= 1:
sampler_train_balanced = samplers.DistributedSampler(dataset_train_balanced)
sampler_val_old = samplers.DistributedSampler(dataset_val_old, shuffle=False)
sampler_val_new = samplers.DistributedSampler(dataset_val_new, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if phase_idx >= 1:
sampler_train_balanced = torch.utils.data.RandomSampler(dataset_train_balanced)
sampler_val_old = torch.utils.data.SequentialSampler(dataset_val_old)
sampler_val_new = torch.utils.data.SequentialSampler(dataset_val_new)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
if phase_idx >= 1:
batch_sampler_train_balanced = torch.utils.data.BatchSampler(
sampler_train_balanced, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
if phase_idx >= 1:
data_loader_train_balanced = DataLoader(dataset_train_balanced, batch_sampler=batch_sampler_train_balanced, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True)
data_loader_val_old = DataLoader(dataset_val_old, args.batch_size, sampler=sampler_val_old, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True)
data_loader_val_new = DataLoader(dataset_val_new, args.batch_size, sampler=sampler_val_new, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True)
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
for n, p in model_without_ddp.named_parameters():
print(n)
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
print('setting the optimizer...')
if args.sgd:
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if phase_idx >= 1:
if args.sgd:
optimizer_balanced = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9,
weight_decay=args.weight_decay)
else:
optimizer_balanced = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler_balanced = torch.optim.lr_scheduler.StepLR(optimizer_balanced, args.lr_drop_balanced)
print('pytorch model distributed...')
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
base_ds = get_coco_api_from_dataset(dataset_val)
if phase_idx >= 1:
base_ds_old = get_coco_api_from_dataset(dataset_val_old)
base_ds_new = get_coco_api_from_dataset(dataset_val_new)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
this_phase_output_dir = args.output_dir + '/phase_'+str(phase_idx)
output_dir = Path(this_phase_output_dir)
Path(this_phase_output_dir).mkdir(parents=True, exist_ok=True)
print("start training")
start_time = time.time()
epoch = 0
if phase_idx==0:
ckpt_path = './phase_0.pth'
checkpoint = torch.load(ckpt_path, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
print("Testing all....")
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
)
else:
if phase_idx >= 1:
old_model = copy.deepcopy(model)
for epoch in range(0, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
if phase_idx >= 1:
train_stats = train_one_epoch_incremental(
model, old_model, args.ref_loss_overall_coef, criterion, postprocessors, data_loader_train, optimizer, device, epoch, args.clip_max_norm)
else:
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm)
lr_scheduler.step()
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
)
print("Testing results for all.")
if phase_idx >= 1:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val_old, base_ds_old, device, args.output_dir
)
print("Testing results for old.")
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val_new, base_ds_new, device, args.output_dir
)
print("Testing results for new.")
if args.balanced_ft and phase_idx >= 1:
for epoch in range(0, 20):
if args.distributed:
sampler_train_balanced.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train_balanced, optimizer_balanced, device, epoch, args.clip_max_norm)
lr_scheduler_balanced.step()
if phase_idx >= 1:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val_old, base_ds_old, device, args.output_dir
)
print("Balanced FT - Testing results for old.")
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val_new, base_ds_new, device, args.output_dir
)
print("Balanced FT - Testing results for new.")
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir)
print("Balanced FT - Testing results for all.")
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Deformable DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.debug_mode:
args.epochs = 1
args.cls_per_phase = 1
args.batch_size = 1
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)