-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path01_Recursive_Knapsack.cpp
35 lines (30 loc) · 1.1 KB
/
01_Recursive_Knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <iostream>
using namespace std;
int Knapsack(int wt[], int val[], int W, int n) {
// every recursive solution will have a base condition
// for base condition we need to think of the smallest valid input that we can pass
// array size can be atleast 0 || min weight can be 0 but not negetive;
if (n == 0 || W == 0)
return 0;
// these are the choices we are having
if (wt[n - 1] <= W) {
return max(val[n - 1] + Knapsack(wt, val, W - wt[n - 1], n - 1), Knapsack(wt, val, W, n - 1));
}
else if (wt[n - 1] > W) // if the weight is greater then the required weight there is no sence for taking that value.
return Knapsack(wt, val, W, n - 1); // return as it is by redusing the size of array
else
return -1;
}
int main() {
int n,W;
cin >> n; // number of items
int val[n], wt[n]; // values and weights of array
for (int i = 0; i < n; i++)
cin >> wt[i];
for (int i = 0; i < n; i++)
cin >> val[i];
cin >> W; // Knapsack capacity
cout << Knapsack(wt, val, W, n) << endl;
return 0;
}
// T(N) = 2T(N-1) + O(1), which is simplified to O(2^N).