-
Notifications
You must be signed in to change notification settings - Fork 10
/
Kth-largest.java
118 lines (100 loc) · 2.71 KB
/
Kth-largest.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Java implementation of worst
// case linear time algorithm
// to find k'th smallest element
import java.util.*;
//Changes to be Made By Yash Munjal
class GFG
{
// int partition(int arr[], int l, int r, int k);
// A simple function to find median of arr[]. This is called
// only for an array of size 5 in this program.
static int findMedian(int arr[], int i,int n)
{
Arrays.sort(arr, i, n);
return arr[i+(n-i)/2]; // sort the array and return middle element
}
// Returns k'th smallest element
// in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL
// ELEMENTS IN ARR[] ARE DISTINCT
static int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than
// number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r - l + 1 ; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5,
// calculate median of every group
// and store it in median[] array.
int i;
// There will be floor((n+4)/5) groups;
int []median = new int[(n + 4) / 5];
for (i = 0; i < n/5; i++)
median[i] = findMedian(arr, l+i*5, l+i*5+5);
// For last group with less than 5 elements
if (i*5 < n)
{
median[i] = findMedian(arr, l+i*5, l+i*5+n%5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
int medOfMed = (i == 1)? median[i - 1]:
kthSmallest(median, 0, i - 1, i / 2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = partition(arr, l, r, medOfMed);
// If position is same as k
if (pos-l == k - 1)
return arr[pos];
if (pos-l > k - 1) // If position is more, recur for left
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return Integer.MAX_VALUE;
}
static int[] swap(int []arr, int i, int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
return arr;
}
// It searches for x in arr[l..r], and
// partitions the array around x.
static int partition(int arr[], int l,
int r, int x)
{
// Search for x in arr[l..r] and move it to end
int i;
for (i = l; i < r; i++)
if (arr[i] == x)
break;
swap(arr, i, r);
// Standard partition algorithm
i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j] <= x)
{
swap(arr, i, j);
i++;
}
}
swap(arr, i, r);
return i;
}
// Driver code
public static void main(String[] args)
{
int arr[] = {12, 3, 5, 7, 4, 19, 26};
int n = arr.length, k = 3;
System.out.println("K'th smallest element is "
+ kthSmallest(arr, 0, n - 1, k));
}
}
// This code has been contributed by 29AjayKumar and updated by ajayhajare