-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsvg-arc.ts
132 lines (119 loc) · 3.51 KB
/
svg-arc.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* SVG Arc Utility function, based on Apache Batik code:
* https://xmlgraphics.apache.org/batik/
*
* Algorithm taken from org.apache.batik.ext.awt.geom.ExtendedGeneralPath::computeArc()
* with slight adaptations.
*
* Original copyright notice follows.
*/
function toRadians(n: number) {
return (n / 180) * Math.PI;
}
function toDegrees(n: number) {
return (n / Math.PI) * 180;
}
/*
Copyright 2001-2003 The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
export function computeArc(
x0: number,
y0: number,
rx: number,
ry: number,
angle: number,
largeArcFlag: boolean,
sweepFlag: boolean,
x: number,
y: number
) {
//
// Elliptical arc implementation based on the SVG specification notes
//
// Compute the half distance between the current and the final point
const dx2 = (x0 - x) / 2.0;
const dy2 = (y0 - y) / 2.0;
// Convert angle from degrees to radians
angle = toRadians(angle % 360.0);
const cosAngle = Math.cos(angle);
const sinAngle = Math.sin(angle);
//
// Step 1 : Compute (x1, y1)
//
const x1 = cosAngle * dx2 + sinAngle * dy2;
const y1 = -sinAngle * dx2 + cosAngle * dy2;
// Ensure radii are large enough
rx = Math.abs(rx);
ry = Math.abs(ry);
let Prx = rx * rx;
let Pry = ry * ry;
const Px1 = x1 * x1;
const Py1 = y1 * y1;
// check that radii are large enough
const radiiCheck = Px1 / Prx + Py1 / Pry;
if (radiiCheck > 1) {
rx = Math.sqrt(radiiCheck) * rx;
ry = Math.sqrt(radiiCheck) * ry;
Prx = rx * rx;
Pry = ry * ry;
}
//
// Step 2 : Compute (cx1, cy1)
//
let sign = largeArcFlag === sweepFlag ? -1 : 1;
let sq = (Prx * Pry - Prx * Py1 - Pry * Px1) / (Prx * Py1 + Pry * Px1);
sq = sq < 0 ? 0 : sq;
const coef = sign * Math.sqrt(sq);
const cx1 = coef * ((rx * y1) / ry);
const cy1 = coef * -((ry * x1) / rx);
//
// Step 3 : Compute (cx, cy) from (cx1, cy1)
//
const sx2 = (x0 + x) / 2.0;
const sy2 = (y0 + y) / 2.0;
const cx = sx2 + (cosAngle * cx1 - sinAngle * cy1);
const cy = sy2 + (sinAngle * cx1 + cosAngle * cy1);
//
// Step 4 : Compute the angleStart (angle1) and the angleExtent (dangle)
//
const ux = (x1 - cx1) / rx;
const uy = (y1 - cy1) / ry;
const vx = (-x1 - cx1) / rx;
const vy = (-y1 - cy1) / ry;
// Compute the angle start
let n = Math.sqrt(ux * ux + uy * uy);
let p = ux; // (1 * ux) + (0 * uy)
sign = uy < 0 ? -1 : 1;
let angleStart = toDegrees(sign * Math.acos(p / n));
// Compute the angle extent
n = Math.sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
p = ux * vx + uy * vy;
sign = ux * vy - uy * vx < 0 ? -1 : 1;
let angleExtent = toDegrees(sign * Math.acos(p / n));
if (!sweepFlag && angleExtent > 0) {
angleExtent -= 360;
} else if (sweepFlag && angleExtent < 0) {
angleExtent += 360;
}
angleExtent %= 360;
angleStart %= 360;
//
// We can now build the resulting Arc2D in double precision
//
return {
cx,
cy,
width: rx * 2.0,
height: ry * 2.0,
start: angleStart,
extent: angleExtent,
};
}