-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
110 lines (89 loc) · 4.59 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
from typing import Tuple, Dict, Any
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
import joblib
import optuna
def train_model_cv(X: np.ndarray, y: np.ndarray, n_splits: int = 5) -> Tuple[XGBClassifier, StandardScaler]:
"""Train XGBoost model with cross-validation and hyperparameter tuning using Optuna."""
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Use Optuna for hyperparameter optimization
best_params = optimize_hyperparameters(X_scaled, y, n_trials=100)
# Create the best model with optimized parameters
best_model = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
# Perform cross-validation with the best model
cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
cv_scores = cross_val_score(best_model, X_scaled, y, cv=cv, scoring='roc_auc')
# Fit the best model on the entire dataset
best_model.fit(X_scaled, y)
print(f"Best parameters: {best_params}")
print("Cross-validation results:")
cv_results = [f"Fold {i+1}: {score:.3f}" for i, score in enumerate(cv_scores)]
print("\n".join(cv_results))
print(f"Mean ROC AUC: {cv_scores.mean():.3f}")
return best_model, scaler
def evaluate_model(model: XGBClassifier, X: np.ndarray, y: np.ndarray, scaler: StandardScaler) -> Dict[str, float]:
"""Evaluate the model on the entire dataset."""
X_scaled = scaler.transform(X)
y_pred = model.predict(X_scaled)
y_pred_proba = model.predict_proba(X_scaled)[:, 1]
metrics = {
"Accuracy": accuracy_score(y, y_pred),
"Precision": precision_score(y, y_pred),
"Recall": recall_score(y, y_pred),
"F1-score": f1_score(y, y_pred),
"ROC AUC": roc_auc_score(y, y_pred_proba)
}
print("Final Model Performance:")
performance_results = [f"{metric}: {value:.3f}" for metric, value in metrics.items()]
print("\n".join(performance_results))
return metrics
def save_model(model: XGBClassifier, scaler: StandardScaler, filename: str) -> None:
"""Save the trained model and scaler to a file."""
joblib.dump({'model': model, 'scaler': scaler}, filename)
print(f"Model and scaler saved to {filename}")
def load_model(filename: str) -> Tuple[XGBClassifier, StandardScaler]:
"""Load the trained model and scaler from a file."""
loaded = joblib.load(filename)
return loaded['model'], loaded['scaler']
def predict_new_data(model: XGBClassifier, scaler: StandardScaler, X_new: np.ndarray) -> np.ndarray:
"""Make predictions on new data using the trained model and scaler."""
X_scaled = scaler.transform(X_new)
return model.predict(X_scaled)
def compare_models(X: np.ndarray, y: np.ndarray, models: Dict[str, Any]) -> Dict[str, float]:
"""Compare multiple models using cross-validation."""
from sklearn.model_selection import cross_val_score
results = {}
for name, model in models.items():
scores = cross_val_score(model, X, y, cv=5, scoring='roc_auc')
results[name] = scores.mean()
return results
def optimize_hyperparameters(X: np.ndarray, y: np.ndarray, n_trials: int = 100) -> Dict[str, Any]:
"""Optimize hyperparameters using Optuna."""
def objective(trial):
params = {
'max_depth': trial.suggest_int('max_depth', 1, 9),
'learning_rate': trial.suggest_loguniform('learning_rate', 1e-3, 1.0),
'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 10),
'subsample': trial.suggest_uniform('subsample', 0.6, 1.0),
'colsample_bytree': trial.suggest_uniform('colsample_bytree', 0.6, 1.0),
}
model = XGBClassifier(**params, use_label_encoder=False, eval_metric='logloss')
score = cross_val_score(model, X, y, cv=5, scoring='roc_auc').mean()
return score
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=n_trials)
return study.best_params
# Usage in main.py:
models = {
'XGBoost': XGBClassifier(random_state=42),
'Gradient Boosting': GradientBoostingClassifier(random_state=42),
'SVM': SVC(probability=True, random_state=42)
}
model_comparison = compare_models(X, y, models)