-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_cheetah_es.py
executable file
·222 lines (183 loc) · 7.29 KB
/
02_cheetah_es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
import gym
import roboschool
import ptan
import time
import argparse
import numpy as np
import collections
import torch
import torch.nn as nn
from torch import multiprocessing as mp
from torch import optim
from tensorboardX import SummaryWriter
NOISE_STD = 0.05
LEARNING_RATE = 0.01
PROCESSES_COUNT = 6
ITERS_PER_UPDATE = 10
MAX_ITERS = 100000
# result item from the worker to master. Fields:
# 1. random seed used to generate noise
# 2. reward obtained from the positive noise
# 3. reward obtained from the negative noise
# 4. total amount of steps done
RewardsItem = collections.namedtuple('RewardsItem', field_names=['seed', 'pos_reward', 'neg_reward', 'steps'])
def make_env():
return gym.make("RoboschoolHalfCheetah-v1")
class Net(nn.Module):
def __init__(self, obs_size, act_size, hid_size=64):
super(Net, self).__init__()
self.mu = nn.Sequential(
nn.Linear(obs_size, hid_size),
nn.Tanh(),
nn.Linear(hid_size, hid_size),
nn.Tanh(),
nn.Linear(hid_size, act_size),
nn.Tanh(),
)
def forward(self, x):
return self.mu(x)
def evaluate(env, net, device="cpu"):
obs = env.reset()
reward = 0.0
steps = 0
while True:
obs_v = ptan.agent.default_states_preprocessor([obs]).to(device)
action_v = net(obs_v)
action = action_v.data.cpu().numpy()[0]
obs, r, done, _ = env.step(action)
reward += r
steps += 1
if done:
break
return reward, steps
def sample_noise(net, device="cpu"):
res = []
neg = []
for p in net.parameters():
noise_t = torch.FloatTensor(np.random.normal(size=p.data.size()).astype(np.float32)).to(device)
res.append(noise_t)
neg.append(-noise_t)
return res, neg
def eval_with_noise(env, net, noise, noise_std, device="cpu"):
for p, p_n in zip(net.parameters(), noise):
p.data += noise_std * p_n
r, s = evaluate(env, net, device)
for p, p_n in zip(net.parameters(), noise):
p.data -= noise_std * p_n
return r, s
def compute_ranks(x):
"""
Returns ranks in [0, len(x))
Note: This is different from scipy.stats.rankdata, which returns ranks in [1, len(x)].
"""
assert x.ndim == 1
ranks = np.empty(len(x), dtype=int)
ranks[x.argsort()] = np.arange(len(x))
return ranks
def compute_centered_ranks(x):
y = compute_ranks(x.ravel()).reshape(x.shape).astype(np.float32)
y /= (x.size - 1)
y -= .5
return y
def train_step(optimizer, net, batch_noise, batch_reward, writer, step_idx, noise_std):
weighted_noise = None
norm_reward = compute_centered_ranks(np.array(batch_reward))
for noise, reward in zip(batch_noise, norm_reward):
if weighted_noise is None:
weighted_noise = [reward * p_n for p_n in noise]
else:
for w_n, p_n in zip(weighted_noise, noise):
w_n += reward * p_n
m_updates = []
optimizer.zero_grad()
for p, p_update in zip(net.parameters(), weighted_noise):
update = p_update / (len(batch_reward) * noise_std)
p.grad = -update
m_updates.append(torch.norm(update))
writer.add_scalar("update_l2", np.mean(m_updates), step_idx)
optimizer.step()
def worker_func(worker_id, params_queue, rewards_queue, device, noise_std):
env = make_env()
net = Net(env.observation_space.shape[0], env.action_space.shape[0]).to(device)
net.eval()
while True:
params = params_queue.get()
if params is None:
break
net.load_state_dict(params)
for _ in range(ITERS_PER_UPDATE):
seed = np.random.randint(low=0, high=65535)
np.random.seed(seed)
noise, neg_noise = sample_noise(net, device=device)
pos_reward, pos_steps = eval_with_noise(env, net, noise, noise_std, device=device)
neg_reward, neg_steps = eval_with_noise(env, net, neg_noise, noise_std, device=device)
rewards_queue.put(RewardsItem(seed=seed, pos_reward=pos_reward,
neg_reward=neg_reward, steps=pos_steps+neg_steps))
pass
if __name__ == "__main__":
mp.set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action='store_true', help="Enable CUDA mode")
parser.add_argument("--lr", type=float, default=LEARNING_RATE)
parser.add_argument("--noise-std", type=float, default=NOISE_STD)
parser.add_argument("--iters", type=int, default=MAX_ITERS)
args = parser.parse_args()
device = "cuda" if args.cuda else "cpu"
writer = SummaryWriter(comment="-cheetah-es_lr=%.3e_sigma=%.3e" % (args.lr, args.noise_std))
env = make_env()
net = Net(env.observation_space.shape[0], env.action_space.shape[0])
print(net)
params_queues = [mp.Queue(maxsize=1) for _ in range(PROCESSES_COUNT)]
rewards_queue = mp.Queue(maxsize=ITERS_PER_UPDATE)
workers = []
for idx, params_queue in enumerate(params_queues):
proc = mp.Process(target=worker_func, args=(idx, params_queue, rewards_queue, device, args.noise_std))
proc.start()
workers.append(proc)
print("All started!")
optimizer = optim.Adam(net.parameters(), lr=args.lr)
for step_idx in range(args.iters):
# broadcasting network params
params = net.state_dict()
for q in params_queues:
q.put(params)
# waiting for results
t_start = time.time()
batch_noise = []
batch_reward = []
results = 0
batch_steps = 0
batch_steps_data = []
while True:
while not rewards_queue.empty():
reward = rewards_queue.get_nowait()
np.random.seed(reward.seed)
noise, neg_noise = sample_noise(net)
batch_noise.append(noise)
batch_reward.append(reward.pos_reward)
batch_noise.append(neg_noise)
batch_reward.append(reward.neg_reward)
results += 1
batch_steps += reward.steps
batch_steps_data.append(reward.steps)
if results == PROCESSES_COUNT * ITERS_PER_UPDATE:
break
time.sleep(0.01)
dt_data = time.time() - t_start
m_reward = np.mean(batch_reward)
train_step(optimizer, net, batch_noise, batch_reward, writer, step_idx, args.noise_std)
writer.add_scalar("reward_mean", m_reward, step_idx)
writer.add_scalar("reward_std", np.std(batch_reward), step_idx)
writer.add_scalar("reward_max", np.max(batch_reward), step_idx)
writer.add_scalar("batch_episodes", len(batch_reward), step_idx)
writer.add_scalar("batch_steps", batch_steps, step_idx)
speed = batch_steps / (time.time() - t_start)
writer.add_scalar("speed", speed, step_idx)
dt_step = time.time() - t_start - dt_data
print("%d: reward=%.2f, speed=%.2f f/s, data_gather=%.3f, train=%.3f, steps_mean=%.2f, min=%.2f, max=%.2f, steps_std=%.2f" % (
step_idx, m_reward, speed, dt_data, dt_step, np.mean(batch_steps_data),
np.min(batch_steps_data), np.max(batch_steps_data), np.std(batch_steps_data)))
for worker, p_queue in zip(workers, params_queues):
p_queue.put(None)
worker.join()