forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path027-image_processing_in_openCV_intro2-Thresholding.py
118 lines (80 loc) · 3.95 KB
/
027-image_processing_in_openCV_intro2-Thresholding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=XfDkg3z3BCg
#Image enhancements:
# Sometimes microscope images lack contrast, they appear to be washed out but they still contain information.
# (Show scratch assay and alloy images)
# We can mathematically process these images and make them look good,
#more importantly, get them ready for segmentation
#
#Histogram equalization is a good way to stretch the histogram and thus improve the image.
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread("images/Alloy.jpg", 0)
equ = cv2.equalizeHist(img)
plt.hist(equ.flat, bins=100, range=(0,100))
cv2.imshow("Original Image", img)
cv2.imshow("Equalized", equ)
#Histogram Equalization considers the global contrast of the image, may not give good results.
#Adaptive histogram equalization divides images into small tiles and performs hist. eq.
#Contrast limiting is also applied to minimize aplification of noise.
#Together the algorithm is called: Contrast Limited Adaptive Histogram Equalization (CLAHE)
# Start by creating a CLAHE object (Arguments are optional).
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) #Define tile size and clip limit.
cl1 = clahe.apply(img)
cv2.imshow("CLAHE", cl1)
cv2.waitKey(0)
cv2.destroyAllWindows()
######################################################
###################################################
#Image thresholding
import cv2
import matplotlib.pyplot as plt
img = cv2.imread("images/Alloy.jpg", 0)
#Adaptive histogram equalization using CLAHE to stretch the histogram.
#Contrast Limited Adaptive Histogram Equalization covered in the previous tutorial.
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) #Define tile size and clip limit.
clahe_img = clahe.apply(img)
plt.hist(clahe_img.flat, bins =100, range=(0,255))
#Thresholding. Creates a uint8 image but with binary values.
#Can use this image to further segment.
#First argument is the source image, which should be a grayscale image.
#Second argument is the threshold value which is used to classify the pixel values.
#Third argument is the maxVal which represents the value to be given to the thresholded pixel.
ret,thresh1 = cv2.threshold(clahe_img,185,150,cv2.THRESH_BINARY) #All thresholded pixels in grey = 150
ret,thresh2 = cv2.threshold(clahe_img,185,255,cv2.THRESH_BINARY_INV) # All thresholded pixels in white
cv2.imshow("Original", img)
cv2.imshow("Binary thresholded", thresh1)
cv2.imshow("Inverted Binary thresholded", thresh2)
cv2.waitKey(0)
cv2.destroyAllWindows()
############################################
#OTSU Thresholding, binarization
import cv2
import matplotlib.pyplot as plt
img = cv2.imread("images/Alloy.jpg", 0)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) #Define tile size and clip limit.
clahe_img = clahe.apply(img)
plt.hist(clahe_img.flat, bins =100, range=(0,255))
# binary thresholding
ret1,th1 = cv2.threshold(clahe_img,185,200,cv2.THRESH_BINARY)
# Otsu's thresholding, automatically finds the threshold point.
#Compare wth above value provided by us (185)
ret2,th2 = cv2.threshold(clahe_img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("Otsu", th2)
cv2.waitKey(0)
cv2.destroyAllWindows()
# If working with noisy images
# Clean up noise for better thresholding
# Otsu's thresholding after Gaussian filtering. Canuse median or NLM for beteer edge preserving
import cv2
import matplotlib.pyplot as plt
img = cv2.imread("images/Alloy_noisy.jpg", 0)
blur = cv2.GaussianBlur(clahe_img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
plt.hist(blur.flat, bins =100, range=(0,255))
cv2.imshow("OTSU Gaussian cleaned", th3)
cv2.waitKey(0)
cv2.destroyAllWindows()