-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAllmain.R
188 lines (139 loc) · 5.63 KB
/
Allmain.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
library(Seurat)
library(Signac)
library(stringr)
library(argparse)
library(destiny)
library(dplyr)
source("utils.R")
print("...configure parameters...")
parser <- ArgumentParser(description='Process some tasks')
parser$add_argument("--root",
type="character",
default="/Data/zoc/result/10X-count/PBMC/10X-VDJ-human/5RNA",
help="root of dataset")
parser$add_argument("--ratio",
type="character",
default="0.1",
help="the ratio to sample each dataset")
parser$add_argument("--dm",
dest="dm",
action="store_true")
parser$add_argument("--seed",
type="integer",
default="1234",
help="the seed for random sample")
parser$add_argument("--resolution",
type="character",
default="0.8",
help="the resolution")
args <- parser$parse_args()
print("--------------------")
print(paste0("The root of dataset is : ",args$root))
print(paste0("Whether run diffusionmap : ",args$dm))
print(paste0("The ratio of random sample for each dataset is :",args$ratio))
print(paste0("The seed for random sample is ",args$seed))
print("--------------------")
dataset<-paste0("pretrain","/","all","_ratio_",args$ratio,"_seed_",args$seed,"_resolution_",args$resolution)
model<-paste0(dataset,"/","model")
figure<-paste0(dataset,"/","figure")
if(!dir.exists(model)){
dir.create(model,recursive=TRUE)
}
if(!dir.exists(figure)){
dir.create(figure,recursive=TRUE)
}
print("Loading dataset")
#system("ls /Data/zoc/result/10X-count/PBMC/10X-VDJ-human/5RNA | grep -v -E '*-RNA-*' > sample.txt")
samples<-as.character(read.table("sample0.txt",header=FALSE)$V1)
classes<-as.character(read.table("sample0.txt",header=FALSE)$V4)
data<-list()
idents<-c()
class<-c()
i<-1
for(ident in samples){
file=paste0(args$root,"/",ident,"/outs/filtered_feature_bc_matrix.h5")
x<-Read10X_h5(file)
n<-floor(ncol(x)*as.numeric(args$ratio))
print(paste0("The No.",i," ",ident," sample size is : ",n))
idents<-c(idents,rep(paste(str_split(ident,"-")[[1]][1:2],collapse="-"),n))
class<-c(class,rep(classes[i],n))
idx<-sample(1:ncol(x),size=n,replace=FALSE)
x<-x[,idx]
colnames(x)<-paste(paste(str_split(ident,"-")[[1]][1:2],collapse="-"),colnames(x),sep="_")
data[[i]]<-x
i<-i+1
}
counts<-do.call(cbind,data)
print(dim(counts))
print(table(idents))
print("remove MT- genes")
genes.use<-rownames(counts)[!str_detect(rownames(counts),"^MT-+")]
counts<-counts[genes.use,]
print("Create Seurat Object")
idents<-data.frame("ident"=idents,"class"=class)
rownames(idents)<-colnames(counts)
print(dim(idents))
object<-CreateSeuratObject(counts= counts,
assay = "RNA",
project ="scRNA",
meta.data=idents,
min.cells=250,
min.features=100)
[email protected]$disease<-unlist(lapply([email protected]$ident,function(i){return(str_split(i,"-")[[1]][1])}))
#[email protected]$class<-ifelse(str_detect([email protected]$disease,"UBQ|UBR"),"BD","VHK")
print(head([email protected]))
print("Data preprocessing")
object[["percent.mt"]] <- PercentageFeatureSet(object,pattern = "^MT+")
object[["percent.cd"]] <- PercentageFeatureSet(object,pattern = "^CD+")
print("Subset...")
jpeg(paste0(figure,"/VlnPlot.jpeg"))
p1<-VlnPlot(object, features = c("nFeature_RNA"),group.by="disease",pt.size=0.3)
p2<-VlnPlot(object, features = c("percent.cd"),group.by="disease",pt.size=0.3)
p3<-VlnPlot(object, features = c("percent.mt"),group.by="disease",pt.size=0.3)
CombinePlots(plots = list(p1, p2,p3))
dev.off()
object<- subset(object, subset = nFeature_RNA > 500 & nFeature_RNA < 3800& percent.mt <25&percent.cd<2)
object <- FindVariableFeatures(object, selection.method = "vst",
nfeatures = 2000,verbose = TRUE)
object<-NormalizeData(object,normalization.method = "LogNormalize",verbose = TRUE)
object<-ScaleData(object,model.use = "linear",
vars.to.regress = c("ident",
"nFeature_RNA",
"percent.mt"),verbose = TRUE)
print("Run LSI...")
object <- RunLSI(object, n = 50, scale.max = NULL)
print("Run UMAP...")
object <- RunUMAP(object, reduction = "lsi", dims = 1:30)
print("Run PCA...")
object<-RunPCA(object,assay = "RNA",npcs = 50)
print("Run TSNE...")
object<-RunTSNE(object,reduction="lsi",dims=1:30)
if(args$dm){
print("Run Diffusionmap...")
x<-Seurat2Monocle(object)
x<-DiffusionMap(data = x,k = floor(sqrt(ncol(x))),n_eigs=3)
diffusionmap.mat<-x@eigenvectors
jpeg(paste0(figure,"/DiffusionMap.jpeg"))
plot(x)
dev.off()
colnames(diffusionmap.mat)<-paste("DM_",1:ncol(diffusionmap.mat),sep = "")
rownames(diffusionmap.mat)<-colnames(object)
object[["dm"]]<-CreateDimReducObject(embeddings = diffusionmap.mat,
key = "DM_",
assay = DefaultAssay(object)
)
saveRDS(x,paste0(model,"/","DM.rds"))
}
object<-FindNeighbors(object,reduction = "lsi",dims = 1:30)
object<-FindClusters(object,resolution = as.numeric(args$resolution))
print("Find markers...")
markers <- FindAllMarkers(object, only.pos = FALSE,
#features = VariableFeatures(object),
test.use = "wilcox",
min.pct = 0.2,
logfc.threshold = 0.25,
pseudocount.use = 1 )
print("Saving Model :")
saveRDS(object,paste0(model,"/","object.rds"))
saveRDS(markers,paste0(model,"/","markers.rds"))
print("Successfully Done")