-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_cal_imagenet.py
166 lines (135 loc) · 6.47 KB
/
main_cal_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
import random
import numpy as np
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from distributed_utils import get_local_rank, initialize
from models.calibration import bias_corr_model, weights_cali_model
from models.fold_bn import search_fold_and_remove_bn
from models.ImageNet.models.mobilenet import mobilenetv1
from models.ImageNet.models.resnet import res_spcials, resnet34_snn
from models.ImageNet.models.vgg import vgg16, vgg16_bn, vgg_specials
from models.spiking_layer import SpikeModel, get_maximum_activation
def build_imagenet_data(data_path: str = '', input_size: int = 224, batch_size: int = 64, workers: int = 4,
dist_sample: bool = False):
print('==> Using Pytorch Dataset')
traindir = os.path.join(data_path, 'train')
valdir = os.path.join(data_path, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# torchvision.set_image_backend('accimage')
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize,
]))
if dist_sample:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=(train_sampler is None),
num_workers=workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True, sampler=val_sampler)
return train_loader, val_loader
def seed_all(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
@torch.no_grad()
def validate_model(test_loader, ann):
correct = 0
total = 0
ann.eval()
device = next(ann.parameters()).device
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.to(device)
outputs = ann(inputs)
_, predicted = outputs.cpu().max(1)
total += float(targets.size(0))
correct += float(predicted.eq(targets).sum().item())
if batch_idx % 100 == 0:
acc = 100. * float(correct) / float(total)
print(batch_idx, len(test_loader), ' Acc: %.5f' % acc)
print('Test Accuracy of the model on the 10000 test images: %.3f' % (100 * correct / total))
return 100 * correct / total
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='model parameters',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--arch', default='VGG16', type=str, help='network architecture', choices=['VGG16', 'res34'])
parser.add_argument('--dpath', required=True, type=str, help='dataset directory')
parser.add_argument('--seed', default=1000, type=int, help='random seed to reproduce results')
parser.add_argument('--batch_size', default=32, type=int, help='minibatch size')
parser.add_argument('--calib', default='none', type=str, help='calibration methods',
choices=['none', 'light', 'advanced'])
parser.add_argument('--T', default=16, type=int, help='snn simulation length')
parser.add_argument('--usebn', action='store_true', help='use batch normalization in ann')
# Initialize distributed envrionments
# Note: If this doesn't work, you may use the method in official torch example:
# https://pytorch.org/tutorials/intermediate/dist_tuto.html
try:
initialize()
initialized = True
torch.cuda.set_device(get_local_rank())
except:
print('For some reason, your distributed environment is not initialized, this program may run on separate GPUs')
initialized = False
args = parser.parse_args()
results_list = []
use_bn = args.usebn
# run one time imagenet experiment.
for i in range(1):
seed_all(seed=args.seed + i)
sim_length = 32
use_cifar10 = args.dataset == 'CIFAR10'
train_loader, test_loader = build_imagenet_data(data_path=args.dpath, dist_sample=initialized)
if args.arch == 'VGG16':
ann = vgg16_bn(pretrained=True) if args.usebn else vgg16(pretrained=True)
elif args.arch == 'res34':
ann = resnet34_snn(pretrained=True, use_bn=args.usebn)
elif args.arch == 'mobilenet':
ann = mobilenetv1(pretrained=True)
else:
raise NotImplementedError
search_fold_and_remove_bn(ann)
ann.cuda()
snn = SpikeModel(model=ann, sim_length=sim_length,
specials=vgg_specials if args.arch == 'VGG16' else res_spcials)
snn.cuda()
mse = False if args.calib == 'none' else True
get_maximum_activation(train_loader, model=snn, momentum=0.9, iters=5, mse=mse, percentile=None,
sim_length=sim_length, channel_wise=False, dist_avg=initialized)
# make sure dist_avg=True to synchronize the data in different GPUs, e.g. gradient and threshold
# otherwise each gpu performs its own calibration
if args.calib == 'light':
bias_corr_model(model=snn, train_loader=train_loader, correct_mempot=False, dist_avg=initialized)
if args.calib == 'advanced':
weights_cali_model(model=snn, train_loader=train_loader, num_cali_samples=1024, learning_rate=1e-5,
dist_avg=initialized)
bias_corr_model(model=snn, train_loader=train_loader, correct_mempot=True, dist_avg=initialized)
snn.set_spike_state(use_spike=True)
results_list.append(validate_model(test_loader, snn))
a = np.array([results_list])
print(a.mean(), a.std())