forked from tanmoyio/sahajBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_trainer.py
213 lines (169 loc) · 8.82 KB
/
run_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
import logging
import os
from dataclasses import asdict
from pathlib import Path
from typing import Optional
import torch
from hivemind import SizeAdaptiveCompression, Float16Compression, Uniform8BitQuantization
from torch.utils.data import DataLoader
import transformers
from transformers import set_seed, HfArgumentParser
from transformers.optimization import get_linear_schedule_with_warmup
from transformers.trainer_utils import is_main_process
from transformers import AlbertTokenizerFast
from transformers.trainer import Trainer
import hivemind
import callback
from lib import LeanAlbertConfig
from lib.models import LeanAlbertForPreTraining
from lib.training.clipped_lamb import LambWithGradientClipping
from lib.training.noop import NoOpScheduler, IgnoreGradManipulations
from lib.training.offload import OffloadOptimizer
from data import make_lazy_wikioscar_dataset
from data_collator import AlbertDataCollatorForWholeWordMask
from arguments import CollaborationArguments, DatasetArguments, AlbertTrainingArguments, AveragerArguments
import utils
from huggingface_auth import authorize_with_huggingface
logger = logging.getLogger(__name__)
def setup_logging(training_args):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
def get_model(training_args, config, tokenizer):
# Find latest checkpoint in output_dir
output_dir = Path(training_args.output_dir)
logger.info(f'Checkpoint dir {output_dir}, contents {list(output_dir.glob("checkpoint*"))}')
latest_checkpoint_dir = max(output_dir.glob('checkpoint*'), default=None, key=os.path.getctime)
if latest_checkpoint_dir is not None:
logger.info(f'Loading model from {latest_checkpoint_dir}')
model = LeanAlbertForPreTraining.from_pretrained(latest_checkpoint_dir)
else:
logger.info(f'Training from scratch')
model = LeanAlbertForPreTraining(config)
model.resize_token_embeddings(len(tokenizer))
return model
def get_optimizer_and_scheduler(training_args, model):
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
opt = OffloadOptimizer(
optimizer_grouped_parameters,
optim_cls=LambWithGradientClipping,
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
max_grad_norm=training_args.max_grad_norm,
clamp_value=training_args.clamp_value,
debias=True,
)
scheduler = get_linear_schedule_with_warmup(
opt,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=training_args.total_steps
)
return opt, scheduler
class TrainerWithIndependentShuffling(Trainer):
"""
A version of HuggingFace trainer that shuffles the dataset using a separate random seed.
Used to ensure that peers don't process batches in the same order.
"""
def __init__(self, *, data_seed: int, **kwargs):
super().__init__(**kwargs)
self.data_seed = data_seed
def get_train_dataloader(self) -> DataLoader:
""" Shuffle data independently for each peer to avoid duplicating batches [important for quality] """
torch.manual_seed(self.data_seed)
return super().get_train_dataloader()
def _wrap_model(self, model, training=True):
return IgnoreGradManipulations(super()._wrap_model(model, training=training))
def main(index: Optional[int] = None):
if index is not None:
print(f"launched TPU with device index {index}")
tpu = index is not None
authorizer = authorize_with_huggingface()
parser = HfArgumentParser((AlbertTrainingArguments, DatasetArguments, CollaborationArguments, AveragerArguments))
training_args, dataset_args, collaboration_args, averager_args = parser.parse_args_into_dataclasses()
logger.info(f"Found {len(collaboration_args.initial_peers)} initial peers: {collaboration_args.initial_peers}")
if len(collaboration_args.initial_peers) == 0:
raise ValueError("Please specify at least one network endpoint in initial peers.")
setup_logging(training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
config = LeanAlbertConfig.from_pretrained(dataset_args.config_path, cache_dir=dataset_args.cache_dir)
tokenizer = AlbertTokenizerFast.from_pretrained(dataset_args.tokenizer_path, cache_dir=dataset_args.cache_dir)
model = get_model(training_args, config, tokenizer)
model.to(training_args.device)
if tpu:
model.tie_weights()
opt, scheduler = get_optimizer_and_scheduler(training_args, model)
validators, local_public_key = utils.make_validators(collaboration_args.experiment_prefix)
dht = hivemind.DHT(
start=True, initial_peers=collaboration_args.initial_peers,
client_mode=collaboration_args.client_mode,
host_maddrs=collaboration_args.host_maddrs,
announce_maddrs=collaboration_args.announce_maddrs,
use_ipfs=collaboration_args.use_ipfs,
record_validators=validators,
authorizer=authorizer
)
utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=collaboration_args.use_ipfs)
total_batch_size_per_step = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
if torch.cuda.device_count() != 0:
total_batch_size_per_step *= torch.cuda.device_count()
statistics_expiration = collaboration_args.statistics_expiration
adjusted_target_batch_size = collaboration_args.target_batch_size - collaboration_args.batch_size_lead
averaging_compression = SizeAdaptiveCompression(
threshold=2 ** 16 + 1, less=Float16Compression(), greater_equal=Uniform8BitQuantization())
collaborative_optimizer = hivemind.CollaborativeOptimizer(
opt=opt, dht=dht, scheduler=scheduler, prefix=collaboration_args.experiment_prefix,
compression=averaging_compression, state_compression=Float16Compression(),
batch_size_per_step=total_batch_size_per_step, bandwidth=collaboration_args.bandwidth,
target_batch_size=adjusted_target_batch_size, client_mode=collaboration_args.client_mode,
reuse_grad_buffers=True, verbose=True, start=True, **asdict(averager_args),
)
collaborative_training_callback = callback.CollaborativeCallback(
dht, collaborative_optimizer, model, local_public_key, statistics_expiration
)
assert training_args.do_train and not training_args.do_eval
training_dataset = make_lazy_wikioscar_dataset(tokenizer, shuffle_seed=hash(local_public_key) % 2 ** 31)
# This data collator will take care of randomly masking the tokens.
data_collator = AlbertDataCollatorForWholeWordMask(
tokenizer=tokenizer, pad_to_multiple_of=training_args.pad_to_multiple_of)
# Note: the code below creates the trainer with dummy scheduler and removes some callbacks.
# This is done because collaborative training has its own callbacks that take other peers into account.
trainer = TrainerWithIndependentShuffling(
model=model, args=training_args, tokenizer=tokenizer,
data_collator=data_collator, data_seed=hash(local_public_key),
train_dataset=training_dataset, eval_dataset=None,
optimizers=(collaborative_optimizer, NoOpScheduler(collaborative_optimizer)),
callbacks=[collaborative_training_callback]
)
trainer.remove_callback(transformers.trainer_callback.PrinterCallback)
trainer.remove_callback(transformers.trainer_callback.ProgressCallback)
latest_checkpoint_dir = max(Path(training_args.output_dir).glob('checkpoint*'), key=os.path.getctime, default=None)
trainer.train(model_path=latest_checkpoint_dir)
if __name__ == "__main__":
main()