-
Notifications
You must be signed in to change notification settings - Fork 7
/
pycbc_inference
179 lines (149 loc) · 6.26 KB
/
pycbc_inference
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# Copyright (C) 2016 Christopher M. Biwer, Collin Capano
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
""" Runs a sampler to find the posterior distributions.
"""
import os
import sys
import argparse
import logging
import shutil
import numpy
import pycbc
from pycbc import (distributions, transforms, fft,
opt, scheme, pool)
from pycbc.waveform import generator
from pycbc import __version__
from pycbc import inference
from pycbc.inference import (models, burn_in, option_utils)
from pycbc.inference.io import loadfile
from pycbc.workflow import configuration
# command line usage
parser = argparse.ArgumentParser(usage=__file__ + " [--options]",
description=__doc__)
parser.add_argument("--version", action="version", version=__version__,
help="Prints version information.")
parser.add_argument("--verbose", action="store_true", default=False,
help="Print logging messages.")
# output options
parser.add_argument("--output-file", type=str, required=True,
help="Output file path.")
parser.add_argument("--force", action="store_true", default=False,
help="If the output-file already exists, overwrite it. "
"Otherwise, an OSError is raised.")
parser.add_argument("--save-backup", action="store_true",
default=False,
help="Don't delete the backup file after the run has "
"completed.")
# parallelization options
parser.add_argument("--nprocesses", type=int, default=1,
help="Number of processes to use. If not given then only "
"a single core will be used.")
parser.add_argument("--use-mpi", action='store_true', default=False,
help="Use MPI to parallelize the sampler")
parser.add_argument("--samples-file", default=None,
help="Use an iteration from an InferenceFile as the "
"initial proposal distribution. The same "
"number of walkers and the same [variable_params] "
"section in the configuration file should be used. "
"The priors must allow encompass the initial "
"positions from the InferenceFile being read.")
parser.add_argument("--seed", type=int, default=0,
help="Seed to use for the random number generator that "
"initially distributes the walkers. Default is 0.")
# add config options
configuration.add_workflow_command_line_group(parser)
# add module pre-defined options
fft.insert_fft_option_group(parser)
opt.insert_optimization_option_group(parser)
scheme.insert_processing_option_group(parser)
# parse command line
opts = parser.parse_args()
# setup log
# If we're running in MPI mode, only allow the parent to print
use_mpi, size, rank = pycbc.pool.use_mpi(opts.use_mpi, log=False)
if pool.is_main_process():
pycbc.init_logging(opts.verbose)
# verify options are sane
fft.verify_fft_options(opts, parser)
opt.verify_optimization_options(opts, parser)
scheme.verify_processing_options(opts, parser)
# check that the output file doesn't already exist
if os.path.exists(opts.output_file) and not opts.force:
raise OSError("output-file already exists; use force if you "
"wish to overwrite it.")
# set seed
numpy.random.seed(opts.seed)
logging.info("Using seed %i", opts.seed)
# we'll silence numpy warnings since they are benign and make for confusing
# logging output
numpy.seterr(divide='ignore', invalid='ignore')
# get scheme
ctx = scheme.from_cli(opts)
fft.from_cli(opts)
with ctx:
# read configuration file
cp = configuration.WorkflowConfigParser.from_cli(opts)
# create an empty checkpoint file, if needed
condor_ckpt = cp.has_option('sampler', 'checkpoint-signal')
if condor_ckpt:
logging.info(
"Sampler will exit with signal {} after checkpointing".format(
cp.get('sampler', 'checkpoint-signal')))
# create an empty output file to keep condor happy
open(opts.output_file, 'a').close()
logging.info("Setting up model")
# construct class that will return the natural logarithm of likelihood
model = models.read_from_config(cp)
logging.info("Setting up sampler")
# Create sampler that will run.
# Note: the pool is created at this point. This means that,
# unless you enjoy angering your cluster admins,
# NO SAMPLES FILE IO SHOULD BE DONE PRIOR TO THIS POINT!!!
sampler = inference.sampler.load_from_config(
cp, model, output_file=opts.output_file, nprocesses=opts.nprocesses,
use_mpi=opts.use_mpi)
# store the checkpoint file
if pool.is_main_process():
for fn in [sampler.checkpoint_file, sampler.backup_file]:
with loadfile(fn, 'a') as fp:
fp.write_config_file(cp)
# Run the sampler
sampler.run()
if not pool.is_main_process():
sys.exit(0)
# Finalize the output
sampler.finalize()
if condor_ckpt:
# unlink the empty output file
try:
os.unlink(opts.output_file)
except:
pass
# rename checkpoint to output and delete backup
logging.info("Moving checkpoint to output")
os.rename(sampler.checkpoint_file, opts.output_file)
if not opts.save_backup:
logging.info("Deleting backup file")
os.remove(sampler.backup_file)
# write the end time
with sampler.io(opts.output_file, 'a') as fp:
fp.write_run_end_time()
if condor_ckpt:
# create an empty checkpoint file
open(sampler.checkpoint_file, 'a').close()
# exit
logging.info("Done")