-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomize_inference.py
161 lines (138 loc) · 5.8 KB
/
customize_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import json
import argparse
from tqdm import tqdm
import torch
# from torch.utils.tensorboard import SummaryWriter
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from customize_data_process import SPECIAL_TOKENS, ATTR_TO_SPECIAL_TOKEN, PAD, PAD_ID
from sketch_main import set_seed
def setup_test_args():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1', type=str, required=False)
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--customize_model_path',
default='_customize_model/best_eval_model/',
type=str,
required=False)
parser.add_argument('--sketch_pred_results_path',
default='sketch_pred_results/random_test_skes.json',
type=str,
required=False)
parser.add_argument('--save_results_dir',
default="customize_pred_results/",
type=str,
required=False)
parser.add_argument('--customize_pred_results_name',
default="random_and_c.json",
type=str,
required=False)
parser.add_argument('--batch_size', default=8, type=int, required=False)
parser.add_argument('--pretrained_model',
default='gpt2-medium',
type=str,
required=False)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument("--max_length", type=int, default=150)
parser.add_argument("--stop_token", type=str, default=None)
parser.add_argument('--temperature',
default=0.7,
type=float,
required=False)
parser.add_argument(
'--repetition_penalty',
default=1.0,
type=float,
required=False,
)
parser.add_argument("--top_k", type=int, default=40)
parser.add_argument("--top_p", type=float, default=1.0)
parser.add_argument(
"--use_lcs_skeletons",
action="store_true",
help="Bool, whether use LCS skeletons to generate counterfactual endings.")
return parser.parse_args()
def main():
args = setup_test_args()
args.cuda = torch.cuda.is_available() and not args.no_cuda
device = 'cuda' if args.cuda else 'cpu'
print('using device:{}'.format(device))
if args.seed:
set_seed(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
tokenizer.add_special_tokens(ATTR_TO_SPECIAL_TOKEN)
model = GPT2LMHeadModel.from_pretrained(args.customize_model_path)
model.to(device)
global PAD_ID
PAD_ID = tokenizer.convert_tokens_to_ids(PAD)
multi_gpu = False
model.eval()
print("loading test data")
with open(args.sketch_pred_results_path, 'r', encoding='utf-8') as f:
data = json.load(f)
print("there are {} story in raw test dataset".format(len(data)))
premise, condition, ending, skeleton, c_condition, c_ending, c_skeleton, bos, eos = tokenizer.convert_tokens_to_ids(
SPECIAL_TOKENS[:-1])
def tk2id(tokenizer, text):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
if not os.path.exists(args.save_results_dir):
os.makedirs(args.save_results_dir)
g = open(args.save_results_dir + args.customize_pred_results_name,
"w",
encoding="utf-8")
gen_results = []
i = -1
with torch.no_grad():
for story_index, story in enumerate(tqdm(data)):
i += 1
if i % 3 != 0:
continue
pre = story['premise']
con = story['raw_condition']
c_con = story['counterfactual_condition']
ske = story['gt_raw_skeletons_ending']
c_ske = story['gt_counterfactual_skeletons_ending']
pred_ske = story['raw_skeletons_endings'][0]
pred_c_ske = story['counterfactual_skeletons_endings'][0]
end = story['ending']
c_end = story['c_ending']
if args.use_lcs_skeletons:
pred_c_ske = c_ske
# pre_ccon_pred_cske: premise + counterfactual condition + predicted counterfactual skeleton
pre_ccon_pred_cske = [bos] + [premise] + tk2id(tokenizer, pre) + [
c_condition
] + tk2id(tokenizer, c_con) + [c_skeleton] + tk2id(
tokenizer, pred_c_ske) + [c_ending]
pre_ccon_pred_cske = torch.tensor(pre_ccon_pred_cske).unsqueeze(
0).cuda()
pc_output_sequences = model.generate(
input_ids=pre_ccon_pred_cske,
max_length=args.max_length,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=1.0,
do_sample=True,
num_return_sequences=1,
)
pgenerated_sequence = pc_output_sequences[0].tolist()
pc_text = tokenizer.decode(pgenerated_sequence)
pc_text = pc_text[len(
tokenizer.decode(pre_ccon_pred_cske[0],
clean_up_tokenization_spaces=True)):]
pc_text = pc_text[:pc_text.find("<eos>")]
res = {}
res['premise'] = pre
res['condition'] = con
res['ending'] = end
res['cf_condition'] = c_con
res['cf_ending'] = c_end
res['cf_skeleton'] = c_ske
res['cf_pred_skeleton'] = pred_c_ske
res['cf_pred_gen_ending'] = pc_text
gen_results.append(res)
json.dump(gen_results, g)
if __name__ == '__main__':
main()