forked from peir0315/GoGoProject
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
161 lines (137 loc) · 5.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import os
from os.path import join as PJ
import shutil
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.optim import Adam, lr_scheduler
from tensorboardX import SummaryWriter
from datasets.Dataset import CIFAR10Dataset
from networks import ResNet18, HaHaNet
from utils import config, data_transform
from test import test
########################################
# Environment and Experiment setting
########################################
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--exp', '-e', type=str, default='exp1_ResNet18')
args = parser.parse_args()
# Load experiment config
config_path = PJ(os.getcwd(), "configs", f"{args.exp}.yaml")
config = config(config_path)
exp_name = config['exp_name']
print(f"EXP: {exp_name}")
# Create saving directory
save_root = PJ(os.getcwd(), "results", exp_name)
if not os.path.exists(save_root):
os.makedirs(save_root)
print(f"Create {save_root}")
# Tensorboad
writer = SummaryWriter(PJ(os.getcwd(), "results", "logs", exp_name))
# Saving config file
shutil.copy(config_path, PJ(save_root, f"{exp_name}.yaml"))
# Show some experiment info
print(f"Model: {config['model']}")
print(f"Pretrained: {config['pretrained']}, Freeze: {config['freeze']}")
########################################
# Data loader
########################################
class2idx = config['class2idx']
idx2class = {class2idx[k]: k for k in class2idx.keys()}
# Dataset
transform = data_transform(config, train=True)
trainset = CIFAR10Dataset(config['data_root'], config['train_file'], class2idx, transform)
transform = data_transform(config, train=False)
valset = CIFAR10Dataset(config['data_root'], config['val_file'], class2idx, transform)
# Dataloader
trainloader = DataLoader(trainset, config['batch_size'], shuffle=True, num_workers=config['num_workers'])
valloader = DataLoader(valset, config['test_size'], shuffle=False, num_workers=config['num_workers'])
print(f"Train data: {len(trainset)} | Val data: {len(valset)}")
print(f"Number of batch: {len(trainloader)}/epoch")
########################################
# Model
########################################
num_class = len(class2idx)
input_size = config['new_size']
if config['model'] == 'ResNet18':
model = ResNet18(input_size, num_class, config['pretrained'], config['freeze'])
elif config['model'] == 'HaHaNet':
model = HaHaNet(input_size, num_class, config['pretrained'], config['freeze'])
else:
raise f"Model {config['model']} is not support."
# Drop model into GPU
#model.cuda()
model
########################################
# Criterion and Optimizer
########################################
def criterion(predicts, targets):
""" predicts: (N, C), targets: (N) """
ce = nn.CrossEntropyLoss()
loss = ce(predicts, targets.reshape(-1))
return loss
optimizer = Adam(model.parameters(), config['lr'],
weight_decay=config['weight_decay'])
resume = config['resume']
if resume:
model_weights = os.listdir(save_root)
model_weights.remove("optimizer.pt")
model_weights.sort()
last_model_name = model_weights[-1]
model.load_state_dict(torch.load(PJ(save_root, last_model_name)))
optimizer.load_state_dict(torch.load(PJ(save_root, "optimizer.pt")))
print(f"Loading model {last_model_name} successed!")
print(f"Loading optimizer successed!")
iteration, last_epoch = int(last_model_name[-11:-3]), int(last_model_name[:4])
iteration, last_epoch = (iteration, last_epoch) if resume else (0, 1)
# Learning rate decay scheduler
scheduler = lr_scheduler.MultiStepLR(
optimizer, config["step_size"], config["gamma"], last_epoch=last_epoch - 2)
########################################
# Start training
########################################
print("\n> Training")
for epoch in range(last_epoch, config["max_epoch"]+1):
# scheduler step in each epoch
scheduler.step()
if (__name__ == '__main__'):
#freeze_support()
for it, (labels, images) in enumerate(trainloader):
optimizer.zero_grad()
# Drop images and labels into GPU
images = images.detach()
labels = labels.detach()
# Forward
predicts = model(images)
# Backward
loss = criterion(predicts, labels)
# 1. Calculate gradient
loss.backward()
# 2. Update parameters
optimizer.step()
# Record training log (Tensorboard)
if (iteration + 1) % config['log_iter'] == 0:
print(f"Iteration: [{it + 1:06d} / {len(trainloader):06d}] (Epoch: {epoch})")
writer.add_scalar("loss", loss.item(), iteration + 1)
writer.add_scalar("lr", optimizer.param_groups[0]['lr'], iteration + 1)
iteration += 1
# Saving model
torch.save(model.state_dict(), PJ(save_root, f"{epoch:04d}_{iteration:08d}.pt"))
torch.save(optimizer.state_dict(), PJ(save_root, "optimizer.pt"))
print(f"Saving model in {save_root} finished.\n")
########################################
# Start evaluate (validation set)
########################################
# Evaluate mode. Take of dropout.
model.eval()
# Not calculate gradient
torch.set_grad_enabled(False)
print("> Evaluation")
accuracy = test(valloader, model)
print(f"[{epoch}] Accuracy: {accuracy:0.4f}\n")
writer.add_scalar("Evaluate/accuracy_val", accuracy, epoch)
# Training mode.
model.train()
torch.set_grad_enabled(True)