forked from modelscope/facechain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_inference.py
55 lines (44 loc) · 1.95 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
from facechain.inference import GenPortrait
import cv2
from modelscope import snapshot_download
from facechain.constants import neg_prompt, pos_prompt_with_cloth, pos_prompt_with_style, styles, cloth_prompt
def generate_pos_prompt(style_model, prompt_cloth):
if style_model == styles[0]['name'] or style_model is None:
pos_prompt = pos_prompt_with_cloth.format(prompt_cloth)
else:
matched = list(filter(lambda style: style_model == style['name'], styles))
if len(matched) == 0:
raise ValueError(f'styles not found: {style_model}')
matched = matched[0]
pos_prompt = pos_prompt_with_style.format(matched['add_prompt_style'])
return pos_prompt
use_main_model = True
use_face_swap = True
use_post_process = True
use_stylization = False
processed_dir = './processed'
num_generate = 5
base_model = 'ly261666/cv_portrait_model'
revision = 'v2.0'
multiplier_style = 0.25
base_model_sub_dir = 'film/film'
train_output_dir = './output'
output_dir = './generated'
use_style = False
if not use_style:
style_model_path = None
pos_prompt = generate_pos_prompt(styles[0]['name'], cloth_prompt[0]['prompt'])
else:
model_dir = snapshot_download(styles[1]['model_id'], revision=styles[1]['revision'])
style_model_path = os.path.join(model_dir, styles[1]['bin_file'])
pos_prompt = generate_pos_prompt(styles[1]['name'], styles[1]['add_prompt_style']) # style has its own prompt
gen_portrait = GenPortrait(pos_prompt, neg_prompt, style_model_path, multiplier_style, use_main_model,
use_face_swap, use_post_process,
use_stylization)
outputs = gen_portrait(processed_dir, num_generate, base_model,
train_output_dir, base_model_sub_dir, revision)
os.makedirs(output_dir, exist_ok=True)
for i, out_tmp in enumerate(outputs):
cv2.imwrite(os.path.join(output_dir, f'{i}.png'), out_tmp)