-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdifd.py
142 lines (118 loc) · 4.5 KB
/
difd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import numpy.typing as npt
from dataclasses import dataclass, field
from collections import deque
from typing import Dict
from scipy import linalg
from copy import deepcopy
from frequent_directions import RobustFrequentDirections
@dataclass
class LMBlock():
sketch: RobustFrequentDirections
buffer: npt.NDArray | None = None
count: int = 0
start: int = 1
end: int = 0
size: float = 0.
def append(self, X):
self.count += 1
if self.buffer is None:
self.buffer = X
else:
self.buffer = np.vstack([self.buffer, X])
if len(self.buffer) >= self.sketch.sketch_dim:
self.flush()
def flush(self):
if self.buffer is not None:
self.sketch.fit(self.buffer, batch_size=self.sketch.sketch_dim)
self.buffer = None
def get_sketch(self):
if self.buffer is not None:
self.flush()
return self.sketch.get_sketch()
class DIFD():
def __init__(self, N, d, sketch_dim, R) -> None:
self.N = N
self.d = d
self.sketch_dim = sketch_dim
self.R = R
self.L_f = np.log2(R*sketch_dim)
self.L = int(np.ceil(self.L_f))
self.levels: Dict[int, deque[LMBlock]] = {
i: deque() for i in range(1, self.L+1)}
self.Bs: Dict[int, LMBlock] = {i: LMBlock(RobustFrequentDirections(self.d, min(self.d, self.L * (2**i))))
for i in range(1, self.L+1)}
self.time = 0
self.base_len = 0
def fit(self, X):
self.time += 1
for l in range(1, self.L+1):
q = self.levels[l]
while len(q) != 0:
if q[0].start < self.time-self.N+1:
q.popleft()
else:
break
self.Bs[l].size += [email protected]
self.Bs[l].end = self.time
self.Bs[l].append(X)
if self.Bs[1].size > self.N / self.sketch_dim:
self.base_len += 1
v = self.base_len
v = (v & -v).bit_length()
v = min(v, self.L+1)
for i in range(1, v):
if self.Bs[i].start >= self.time-self.N+1:
self.Bs[i].flush()
self.levels[i].append(self.Bs[i])
self.Bs[i] = LMBlock(sketch=RobustFrequentDirections(
self.d, min(self.d, self.L*(2**i))), start=self.time+1, end=self.time)
def get(self):
a = self.time
b = max(1, int(self.time - self.N + 1))
ret = self.Bs[1].get_sketch()
for i in range(self.L, 0, -1):
if len(self.levels[i]) != 0:
lb = self.levels[i][0]
if lb.start >= self.time - self.N + 1:
if lb.end <= a:
ret = np.vstack([ret, lb.get_sketch()])
a = lb.start
if len(self.levels[i]) != 1:
rb = self.levels[i][-1]
if rb.start >= b:
ret = np.vstack([ret, rb.get_sketch()])
b = rb.end
else:
b = lb.end
# if self.Bs[i].sketch is not None:
# lb = self.Bs[i] if len(
# self.levels[i]) == 0 else self.levels[i][0]
# rb = self.Bs[i]
# if lb.start >= int(self.time - self.N + 1) and lb.end <= a:
# ret = np.vstack([ret, lb.sketch])
# a = lb.start - 1
# b = rb.end + 1
# if len(self.levels[i]) != 0:
# if rb.start >= b:
# ret = np.vstack([ret, rb.sketch])
# a = rb.start - 1
# b = rb.end + 1
_, s, Vt = linalg.svd(
ret, full_matrices=False, lapack_driver='gesvd')
s = s ** 2
if len(s) > self.sketch_dim:
s = s[:self.sketch_dim] - s[self.sketch_dim]
Vt = Vt[:self.sketch_dim]
ret = Vt * np.sqrt(s).reshape(-1, 1)
return ret, None, None, None
def get_size(self):
res = 0
# if self.B.sketch is not None:
# res += self.B.sketch.shape[0]
for l in self.levels:
for b in self.levels[l]:
if b.sketch is not None:
res += min(b.count, self.sketch_dim)
return res
# return sum([len(self.levels[l]) * self.sketch_dim for l in self.levels]) + self.L * self.sketch_dim