forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemm_layernorm.cu
937 lines (744 loc) · 30.4 KB
/
gemm_layernorm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief CUTLASS Layernorm Example.
This workload provides a layer normalization example using a one-pass, square-sum-based
variance calculation. Specifically, we fuse the reduction operation to find
local mean and local square sum mean in the epilogue of 1st GEMM. After a light
full reduction kernel, the mean / variance values are readily calculated for element-wise
operations which are fused into the 2nd GEMM.
As stated in https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data,
the square-sum based one-pass implementation may raise concerns on numerical stability issues.
That being said, though this fully fused layernorm example almost perfectly hides all the memory cost to
access the intermediate matrix for layernorm computation, the numerical issue might hinder a persuasive
usage in real-world scenarios. If that is the case, a user may turn to the stand-alone CUTLASS layernorm
example in tools/util/include/cutlass/util/device_layernorm.h
Examples:
# Run a CUTLASS layernorm example with default setup ,
# using the language of the transformer model as an example,
(Column Major output matrix, hidden dimension = 768, valid word number = 4096, intermediate_scale = 4)
$ ./examples/37_gemm_layernorm_gemm_fusion/37_gemm_layernorm_gemm_fusion
# Run an attention example with hidden dimension = 512
$ ./examples/37_gemm_layernorm_gemm_fusion/37_gemm_layernorm_gemm_fusion --hidden_dim=512
*/
#include <cmath>
#include <iostream>
#include <vector>
#include <limits>
#include "cutlass/cutlass.h"
#include "cutlass/arch/memory.h"
#include "cutlass/arch/memory_sm75.h"
#include "cutlass/gemm/device/gemm_complex.h"
#include "cutlass/epilogue/thread/scale_type.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/host/gemm_complex.h"
#include "cutlass/util/reference/host/tensor_reduce.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/error_metrics.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/fast_math.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "gemm_with_layernorm.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
enum class Disposition {
kPassed,
kIncorrect,
kNotVerified
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
template<typename LayoutOutput_>
struct Options {
using LayoutOutput = LayoutOutput_;
static bool const kIsColumnMajorOutput = cutlass::platform::is_same<LayoutOutput, cutlass::layout::ColumnMajor>::value;
bool help;
cutlass::gemm::GemmCoord problem_size0;
cutlass::gemm::GemmCoord problem_size1;
int hidden_dim;
int valid_word_num;
int intermediate_scale;
int iterations;
unsigned seed;
float alpha;
float beta;
bool verification_enabled;
double tolerance;
Options():
help(false),
iterations(20),
seed(2022),
hidden_dim(768),
valid_word_num(4096),
intermediate_scale(4),
alpha(1),
beta(0),
verification_enabled(true),
tolerance(0.01),
problem_size1(problem_size0.m() * 4, problem_size0.n(), problem_size0.m())
{ }
bool valid() {
return true;
}
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
}
cmd.get_cmd_line_argument("hidden_dim", hidden_dim, 768);
cmd.get_cmd_line_argument("valid_word_num", valid_word_num, 4096);
cmd.get_cmd_line_argument("iterations", iterations);
cmd.get_cmd_line_argument("verify", verification_enabled);
cmd.get_cmd_line_argument("seed", seed);
cmd.get_cmd_line_argument("tolerance", tolerance);
if (kIsColumnMajorOutput) {
// column major output setup
problem_size0.m() = hidden_dim;
problem_size0.n() = valid_word_num;
problem_size0.k() = hidden_dim;
problem_size1.m() = hidden_dim * intermediate_scale;
problem_size1.n() = valid_word_num;
problem_size1.k() = hidden_dim;
}else{
// row major output setup
problem_size0.m() = valid_word_num;
problem_size0.n() = hidden_dim;
problem_size0.k() = hidden_dim;
problem_size1.m() = valid_word_num;
problem_size1.n() = hidden_dim * intermediate_scale;
problem_size1.k() = hidden_dim;
}
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "37_gemm_layernorm_gemm_fusion example\n\n"
<< " This example uses the CUTLASS Library to compute GEMM + Layernorm for arbitrary problem sizes.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --hidden_dim=<int> Hidden dimension\n"
<< " --valid_word_num=<int> Valid word number\n"
<< " --seed=<int> Random number seed (1*)\n\n"
<< " --iterations=<int> Number of profiling iterations to perform (0 to disable profiling).\n\n"
<< " --verify=<bool> If true, performs reference calculation.\n\n"
<< " --tolerance <float> Error tolerance\n"
;
out << "\n\nExamples:\n\n"
<< "$ ./examples/37_gemm_layernorm_gemm_fusion/37_gemm_layernorm_gemm_fusion \\\n"
<< " --hidden_dim=768 --valid_word_num=1024 \n\n";
return out;
}
/// Returns true if the environment and Toolkit support this
bool supported(bool verbose = true) const {
// Ampere Tensor Core operations exposed with mma.sync and ldmatrix are first available
// in CUDA 11.0.
//
// CUTLASS must be compiled with CUDA 11.0 Toolkit to run these examples.
if (!(__CUDACC_VER_MAJOR__ >= 11)) {
if (verbose) {
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
}
return false;
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
if (verbose) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
}
return false;
}
if (!((props.major * 10 + props.minor) >= 80)) {
if (verbose) {
std::cerr << "Ampere Tensor Core operations must be run on a machine with compute capability at least 80."
<< std::endl;
}
return false;
}
//
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
// all pointers, strides, and tensor extents must be divisible by 8 elements.
//
int const kAlignment = 8;
if ((problem_size0.m() % kAlignment) ||
(problem_size0.n() % kAlignment) ||
(problem_size0.k() % kAlignment)) {
if (verbose) {
std::cerr << "Misaligned input in 1st GEMM." << std::endl;
}
// misaligned tensors for Gemm1
return false;
}
if ((problem_size1.m() % kAlignment) ||
(problem_size1.n() % kAlignment) ||
(problem_size1.k() % kAlignment)) {
if (verbose) {
std::cerr << "Misaligned input in 2nd GEMM." << std::endl;
}
// misaligned tensors for Gemm2
return false;
}
return true;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template<
typename LayoutOutput_>
struct Testbed {
//
// Type definitions
//
// User-defined data types
using ElementInputA0 = cutlass::half_t;
using ElementInputB0 = cutlass::half_t;
using ElementOutput = cutlass::half_t;
using ElementCompute = cutlass::half_t;
using LayoutInputA0 = cutlass::layout::RowMajor;
using LayoutInputB0 = cutlass::layout::ColumnMajor;
using LayoutOutput = LayoutOutput_;
static bool const kIsColumnMajorOutput = cutlass::platform::is_same<LayoutOutput, cutlass::layout::ColumnMajor>::value;
// turn of shifted K by default
static bool const kIsShiftedVariance = false;
/// Linear scaling operator
using EpilogueFunctorOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementCompute,
ElementCompute
>;
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
static int const kStages0 = 3;
static int const kStages1 = 4;
using GemmLayernorm = cutlass::GemmLayernorm<
ElementInputA0,
LayoutInputA0,
ElementInputB0,
LayoutInputB0,
ElementOutput,
LayoutOutput,
ElementCompute,
EpilogueFunctorOp,
ThreadblockShape,
WarpShape,
InstructionShape,
kStages0,
kStages1,
kIsShiftedVariance
>;
using ElementInputA1 = typename GemmLayernorm::ElementInputA1;
using ElementOutputC1 = typename GemmLayernorm::ElementOutputC1;
using ElementInputScaleBias = typename GemmLayernorm::ElementInputScaleBias;
using ElementLayernormCompute = typename GemmLayernorm::ElementLayernormCompute;
using LayoutInputA1 = typename GemmLayernorm::LayoutInputA1;
using LayoutOutputC0 = typename GemmLayernorm::LayoutOutputC0;
using LayoutOutputC1 = typename GemmLayernorm::LayoutOutputC1;
using LayoutInputScaleBias = typename GemmLayernorm::LayoutInputScaleBias;
//
// Data members
//
Options<LayoutOutput> const &options;
cutlass::HostTensor<ElementInputA0, LayoutInputA0> tensor_A0;
cutlass::HostTensor<ElementInputB0, LayoutInputB0> tensor_B0;
cutlass::HostTensor<ElementOutput, LayoutOutputC0> tensor_C0;
cutlass::HostTensor<ElementInputA1, LayoutInputA1> tensor_A1;
cutlass::HostTensor<ElementOutputC1, LayoutOutputC1> tensor_C1;
cutlass::HostTensor<ElementOutput, LayoutOutputC0> reference_C0;
cutlass::HostTensor<ElementOutputC1, LayoutOutputC1> reference_C1;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> tensor_Variance;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> tensor_Mean;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> tensor_Beta;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> tensor_Gamma;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> reference_Mean;
cutlass::HostTensor<ElementInputScaleBias, LayoutInputScaleBias> reference_Variance;
// shifted K tensor to better ensure the numerical stability
// According to https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// the closer shifted K to the actual mean, the better numerical stability we'll observe
cutlass::HostTensor<ElementOutput, LayoutOutputC0> tensor_Shifted_K;
//
// Methods
//
Testbed(
Options<LayoutOutput> const &options_
):
options(options_)
{
tensor_A0.reset({options.problem_size0.m(), options.problem_size0.k()});
tensor_B0.reset({options.problem_size0.k(), options.problem_size0.n()});
tensor_C0.reset({options.problem_size0.m(), options.problem_size0.n()});
tensor_A1.reset({options.problem_size1.m(), options.problem_size1.k()});
tensor_C1.reset({options.problem_size1.m(), options.problem_size1.n()});
reference_C0.reset({options.problem_size0.m(), options.problem_size0.n()});
reference_C1.reset({options.problem_size1.m(), options.problem_size1.n()});
int leading_dim_0 = kIsColumnMajorOutput ? options.problem_size0.n() : options.problem_size0.m();
int leading_dim_1 = kIsColumnMajorOutput ? options.problem_size0.m() : options.problem_size0.n();
int block_num = (leading_dim_1 + GemmLayernorm::ThreadblockShape::kM - 1) / GemmLayernorm::ThreadblockShape::kM;
tensor_Variance.reset({block_num, leading_dim_0});
tensor_Mean.reset({block_num, leading_dim_0});
tensor_Shifted_K.reset({1, leading_dim_0});
tensor_Beta.reset({1, leading_dim_1});
tensor_Gamma.reset({1, leading_dim_1});
reference_Mean.reset({1, leading_dim_0}, false);
reference_Variance.reset({1, leading_dim_0}, false);
}
/// Run
Disposition run() {
Disposition disposition = Disposition::kNotVerified;
//
// Initialize the workspace
//
initialize();
//
// Launch device kernel
//
cutlass::Status status = cutlass::Status::kSuccess;
status = execute_device_kernel();
if (status != cutlass::Status::kSuccess) {
std::cerr << "Device execution failed." << std::endl;
return disposition;
}
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "Device synchronize failed with error "
<< cudaGetErrorString(result) << std::endl;
return disposition;
}
//
// Compute the reference
//
compute_reference();
//
// Verify
//
if (options.verification_enabled) {
bool passed = verify();
if (passed) {
disposition = Disposition::kPassed;
}
else {
disposition = Disposition::kIncorrect;
}
}
//
// Profiling
//
if (options.iterations) {
profile();
}
return disposition;
}
/// Random initialization
void initialize() {
cutlass::reference::host::TensorFillRandomUniform(
tensor_A0.host_view(),
options.seed,
ElementInputA0(4),
ElementInputA0(-4),
0
);
cutlass::reference::host::TensorFillRandomUniform(
tensor_B0.host_view(),
options.seed + 1,
ElementInputB0(4),
ElementInputB0(-4),
0
);
cutlass::reference::host::TensorFillRandomUniform(
tensor_A1.host_view(),
options.seed + 2,
ElementInputA1(4),
ElementInputA1(-4),
0
);
cutlass::reference::host::TensorFillRandomUniform(
tensor_Beta.host_view(),
options.seed + 3,
ElementInputScaleBias(4),
ElementInputScaleBias(-4),
0
);
cutlass::reference::host::TensorFillRandomUniform(
tensor_Gamma.host_view(),
options.seed + 4,
ElementInputScaleBias(4),
ElementInputScaleBias(-4),
0
);
cutlass::reference::host::TensorFillRandomUniform(
tensor_Shifted_K.host_view(),
options.seed + 5,
ElementOutput(4),
ElementOutput(-5),
0
);
tensor_A0.sync_device();
tensor_B0.sync_device();
tensor_A1.sync_device();
tensor_Beta.sync_device();
tensor_Gamma.sync_device();
}
cutlass::Status execute_device_kernel() {
cutlass::Status status = cutlass::Status::kSuccess;
//
// Setup arguments
//
typename GemmLayernorm::Arguments args(
options.problem_size0,
options.problem_size1,
tensor_A0.device_ref().data(),
tensor_B0.device_ref().data(),
tensor_C0.device_ref().data(),
tensor_C0.device_ref().data(),
tensor_A1.device_ref().data(),
tensor_C1.device_ref().data(),
tensor_A0.device_ref().stride(0),
tensor_B0.device_ref().stride(0),
tensor_C0.device_ref().stride(0),
tensor_C0.device_ref().stride(0),
tensor_A1.device_ref().stride(0),
tensor_C1.device_ref().stride(0),
{
ElementCompute(options.alpha),
ElementCompute(options.beta)
},
tensor_Variance.device_ref(),
tensor_Mean.device_ref(),
tensor_Gamma.device_ref(),
tensor_Beta.device_ref(),
tensor_Shifted_K.device_ref().data()
);
//
// Launch
//
GemmLayernorm gemm_layernorm;
// Initialize
status = gemm_layernorm.initialize(args);
if (status != cutlass::Status::kSuccess) {
return status;
}
// Run
status = gemm_layernorm();
return status;
}
/// Reference calculation
void compute_reference() {
cutlass::reference::device::Gemm<
ElementInputA0,
LayoutInputA0,
ElementInputB0,
LayoutInputB0,
ElementOutput,
LayoutOutputC0,
ElementCompute,
ElementCompute
> gemm_device0;
cutlass::reference::device::Gemm<
ElementInputA1,
LayoutInputA1,
ElementOutput,
LayoutOutputC0,
ElementOutputC1,
LayoutOutputC1,
ElementCompute,
ElementCompute
> gemm_device1;
// Compute 1st GEMM
gemm_device0(
options.problem_size0,
ElementCompute(options.alpha),
tensor_A0.device_ref(),
tensor_B0.device_ref(),
ElementCompute(options.beta),
tensor_C0.device_ref(),
reference_C0.device_ref()
);
reference_C0.sync_host();
tensor_Mean.sync_host();
tensor_Variance.sync_host();
tensor_Gamma.sync_host();
tensor_Beta.sync_host();
tensor_Shifted_K.sync_host();
// Compute the sum and square sum for verification purpose
if (kIsColumnMajorOutput) {
for (int n = 0; n < options.problem_size0.n(); ++n) {
ElementLayernormCompute sum = ElementLayernormCompute(0);
ElementLayernormCompute square_sum = ElementLayernormCompute(0);
for (int m = 0; m < options.problem_size0.m(); ++m) {
sum += ElementLayernormCompute(reference_C0.at({m, n}));
square_sum += ElementLayernormCompute(reference_C0.at({m, n})) * ElementLayernormCompute(reference_C0.at({m, n}));
}
ElementLayernormCompute mean = sum / ElementLayernormCompute(options.problem_size0.m());
ElementLayernormCompute square_mean = square_sum / ElementLayernormCompute(options.problem_size0.m());
ElementLayernormCompute variance = cutlass::constants::one<ElementLayernormCompute>() / cutlass::fast_sqrt(square_mean - mean * mean + ElementLayernormCompute(1e-6) ) ;
mean = -mean * variance;
reference_Mean.at({0, n}) = ElementInputScaleBias(mean);
reference_Variance.at({0, n}) = ElementInputScaleBias(variance);
}
}else{
for (int m = 0; m < options.problem_size0.m(); ++m) {
ElementLayernormCompute sum = ElementLayernormCompute(0);
ElementLayernormCompute square_sum = ElementLayernormCompute(0);
for (int n = 0; n < options.problem_size0.n(); ++n) {
sum += ElementLayernormCompute(reference_C0.at({m, n})) ;
square_sum += ElementLayernormCompute(reference_C0.at({m, n})) * ElementLayernormCompute(reference_C0.at({m, n})) ;
}
ElementLayernormCompute mean = sum / ElementLayernormCompute(options.problem_size0.n());
ElementLayernormCompute square_mean = square_sum / ElementLayernormCompute(options.problem_size0.n());
ElementLayernormCompute variance = cutlass::constants::one<ElementLayernormCompute>() / cutlass::fast_sqrt(square_mean - mean * mean + ElementLayernormCompute(1e-6)) ;
mean = -mean * variance;
reference_Mean.at({0, m}) = ElementInputScaleBias(mean);
reference_Variance.at({0, m}) = ElementInputScaleBias(variance);
}
}
// Element-wise transform for OutputC0 using 1-pass layernorm algo
if (kIsColumnMajorOutput) {
for (int n = 0; n < options.problem_size0.n(); ++n) {
ElementLayernormCompute sum = ElementLayernormCompute(0);
for (int m = 0; m < options.problem_size0.m(); ++m) {
sum += ElementLayernormCompute(reference_C0.at({m, n})) ;
}
ElementInputScaleBias mean = ElementInputScaleBias(sum / ElementLayernormCompute(options.problem_size0.m()));
sum = ElementLayernormCompute(0);
for (int m = 0; m < options.problem_size0.m(); ++m) {
sum += ElementLayernormCompute(reference_C0.at({m, n}) - ElementLayernormCompute(mean)) * ElementLayernormCompute(reference_C0.at({m, n}) - ElementLayernormCompute(mean)) ;
}
ElementLayernormCompute square_mean = sum / ElementLayernormCompute(options.problem_size0.m());
ElementInputScaleBias variance = ElementInputScaleBias(cutlass::constants::one<ElementLayernormCompute>()
/ cutlass::fast_sqrt(square_mean + ElementLayernormCompute(1e-6))) ;
for (int m = 0; m < options.problem_size0.m(); ++m) {
reference_C0.at({m, n}) =
ElementOutput( ( (ElementInputScaleBias(reference_C0.at({m, n})) - mean) * variance )
* tensor_Gamma.at({0, m}) + tensor_Beta.at({0, m}));
}
}
}else{
for (int m = 0; m < options.problem_size0.m(); ++m) {
float sum = float(0);
for (int n = 0; n < options.problem_size0.n(); ++n) {
sum += float(reference_C0.at({m, n})) ;
}
float mean = sum / float(options.problem_size0.n());
sum = float(0);
for (int n = 0; n < options.problem_size0.n(); ++n) {
sum += float(reference_C0.at({m, n}) - mean) * float(reference_C0.at({m, n}) - mean) ;
}
float square_mean = sum / float(options.problem_size0.n());
float variance = cutlass::constants::one<float>() / cutlass::fast_sqrt(square_mean + ElementLayernormCompute(1e-6)) ;
for (int n = 0; n < options.problem_size0.n(); ++n) {
reference_C0.at({m, n}) =
ElementOutput( ( (float(reference_C0.at({m, n})) - mean) * variance )
* float(tensor_Gamma.at({0, n})) + float(tensor_Beta.at({0, n})));
}
}
}
// Sync host data with device after element-wise transform
reference_C0.sync_device();
// Compute 2nd GEMM
gemm_device1(
options.problem_size1,
ElementCompute(options.alpha),
kIsColumnMajorOutput ? tensor_A1.device_ref() : reference_C0.device_ref(),
kIsColumnMajorOutput ? reference_C0.device_ref() :tensor_A1.device_ref(),
ElementCompute(options.beta),
reference_C1.device_ref(),
reference_C1.device_ref()
);
}
/// Emits all tensor values
void emit_results() {
std::cout << "tensor_C1 = \n" << tensor_C1.host_view() << "\n\n";
std::cout << "Reference C1 = \n" << reference_C1.host_view() << "\n\n";
std::cout << "Mean = \n" << tensor_Mean.host_view() << "\n\n";
std::cout << "rsqrt(Variance) = \n" << tensor_Variance.host_view() << "\n\n";
std::cout << "Reference Mean = \n" << reference_Mean.host_view() << "\n\n";
std::cout << "Reference rsqrt(Variance) = \n" << reference_Variance.host_view() << "\n\n";
}
template<typename Element, typename Layout>
bool verify_tensor(cutlass::HostTensor<Element, Layout> tensor, \
cutlass::HostTensor<Element, Layout> reference,
int leading_dim0, int leading_dim1, bool is_print = false) {
float const kThreshold = float(options.tolerance);
float const kAbsThreshold = 0.5f;
float const kRelativeThreshold = 0.1f;
// Adds a constant bias to avoid being divided by '0'
float const kBias = 1e-5f;
int counter = 0;
for (int m = 0; m < leading_dim0; m++) {
for (int n = 0; n < leading_dim1; ++n) {
float diff = (float)(tensor.at({m, n}) - reference.at({m, n}));
float rel_diff = fabs(diff) / fabs(reference.at({m, n}) + kBias);
if (fabs(diff) > kAbsThreshold && rel_diff > kRelativeThreshold) {
counter++;
}
}
}
float err_rate = float(counter) / (float(leading_dim0) * float(leading_dim1));
return (err_rate < kThreshold);
}
/// Verifies the reference matches
bool verify() {
tensor_Variance.sync_host();
tensor_Mean.sync_host();
tensor_C1.sync_host();
reference_C1.sync_host();
// Verification checks - set any of these to 'true' to override the verification checks.
bool verified_C1 = false;
bool verified_Mean = false;
bool verified_Variance = false;
// Verify layernorm output
if (!verified_C1) {
verified_C1 = verify_tensor<ElementOutputC1, LayoutOutputC1>(tensor_C1, reference_C1, options.problem_size1.m(), options.problem_size1.n());
}
if (!verified_Variance) {
verified_Variance = verify_tensor<ElementInputScaleBias, LayoutInputScaleBias>(tensor_Variance, reference_Variance, 1, options.problem_size0.n());
}
if (!verified_Mean) {
verified_Mean = verify_tensor<ElementInputScaleBias, LayoutInputScaleBias>(tensor_Mean, reference_Mean, 1, options.problem_size0.n());
}
if (!verified_C1 || !verified_Mean || !verified_Variance) {
// emit_results();
std::cerr << "Verification check failed for tensor Layernorm" << std::endl;
// Summarize which checks failed
if (!verified_C1) {
std::cerr << "Verification of O tensor failed\n";
}
if (!verified_Mean) {
std::cerr << "Verification of Mean tensor failed\n";
}
if (!verified_Variance) {
std::cerr << "Verification of Variance tensor failed\n";
}
return false;
}
return true;
}
/// Profiles
bool profile() {
//
// Profile
//
cutlass::Status status = cutlass::Status::kSuccess;
cudaError_t result;
cudaEvent_t events[2];
int const kIterations = options.iterations;
for (cudaEvent_t &evt : events) {
result = cudaEventCreate(&evt);
if (result != cudaSuccess) {
std::cerr << "cudaEventCreate failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
}
result = cudaEventRecord(events[0]);
if (result != cudaSuccess) {
std::cerr << "cudaEventRecord() failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
for (int iter = 0; iter < kIterations; ++iter) {
status = execute_device_kernel();
if (status != cutlass::Status::kSuccess) {
std::cerr << "Device execution failed." << std::endl;
return false;
}
}
result = cudaEventRecord(events[1]);
if (result != cudaSuccess) {
std::cerr << "cudaEventRecord() failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "cudaDeviceSynchronize() failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
float elapsed_ms = 0;
result = cudaEventElapsedTime(&elapsed_ms, events[0], events[1]);
float elapsed_ms_per_iter = elapsed_ms / float(kIterations);
if (result != cudaSuccess) {
std::cerr << "cudaEventElapsedTime() failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
for (cudaEvent_t &evt : events) {
result = cudaEventDestroy(evt);
if (result != cudaSuccess) {
std::cerr << "cudaEventDestroy() failed with error " << cudaGetErrorString(result) << std::endl;
return false;
}
}
int64_t flops = int64_t(options.problem_size0.m()) * options.problem_size0.n() * options.problem_size0.k() * 2 \
+ int64_t(options.problem_size1.m()) * options.problem_size1.n() * options.problem_size1.k() * 2;
double gflops_per_second = double(flops) * kIterations / double(elapsed_ms / 1000.0f) / double(1.0e9);
std::cout << " 1st GEMM: "
<< options.problem_size0.m() << "-by-" << options.problem_size0.n() << "-by-" << options.problem_size0.k() << "\n"
<< " 2nd GEMM: "
<< options.problem_size1.m() << "-by-" << options.problem_size1.n() << "-by-" << options.problem_size1.k()
<< std::endl;
std::cout << " Runtime / iteration: " << elapsed_ms_per_iter << " ms\n" << std::endl;
std::cout << " GFLOPs: " << gflops_per_second << " GFLOPs" << std::endl;
return true;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, const char **argv) {
// Define final layout
using LayoutOutput = cutlass::layout::ColumnMajor;
// Options parsing
Options<LayoutOutput> options;
options.parse(argc, argv);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (!options.supported()) {
return 0;
}
// Run
Testbed<LayoutOutput> testbed(options);
Disposition disposition = testbed.run();
std::cout << std::endl;
switch (disposition) {
case Disposition::kPassed:
std::cout << "Passed" << std::endl;
break;
case Disposition::kIncorrect:
std::cout << "Incorrect" << std::endl;
break;
case Disposition::kNotVerified:
std::cout << "Not verified" << std::endl;
break;
}
return (disposition == Disposition::kPassed ? 0 : -1);
}
/////////////////////////////////////////////////////////////////////////////////////////////////