forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path49_collective_builder.cu
652 lines (545 loc) · 29.7 KB
/
49_collective_builder.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Hopper GEMM example leveraging collective operation builders.
This example showcases the use of CUTLASS's CollectiveBuilder to easily construct performant kernels
targeting the NVIDIA Hopper architecture.
Background and motivation
-------------------------
CUTLASS kernels are highly parameterizable via template parameters. To ease the selection of template
parameters, CUTLASS 2 leveraged DefaultGemmConfigurations. Given a small set of parameters, such as
the data types of operands and the compute capability of the GPU, DefaultGemmConfigurations defined sensible
defaults for the many other parameters to the kernel (e.g., warp shape, stage count).
However, DefaultGemmConfigurations leave multiple opportunities for improvement, which are addressed
in CUTLASS 3:
(1) DefaultGemmConfigurations do not allow one to use a more-performant set of parameters without
specifying every parameter. For example, the DefaultGemmConfigurations for GEMMs targeting
Ampere specify that three pipeline stages should be used regardless of the sizes of operands.
If one wished to increase this value, one would also need to specify all other template parameters.
This leaves a gap between a high-level ease-of-use interface and a lower-level detailed interface.
(2) A new DefaultGemmConfiguration was required for each combination of operand types, GPU architecture,
and operation type (e.g., Tensor Core or SIMT). This led to increased code size to cover each unique
configuration and a lack of extensibility from one DefaultGemmConfiguration to another.
Alongside these opportunities for improvement, the Hopper architecture offers new features that increase
the number of valid configurations of a kernel. In addition to the many template parameters already available
in CUTLASS 2 kernels, CUTLASS 3 kernels targeting Hopper also have various scheduling modes to select from that control:
(1) how data is to be loaded (e.g., using the Hopper TMA feature or Ampere cp.async)
(2) how work is to be divided among warps in a thread block (e.g., whether to use "warp specialization")
(3) whether persistent thread blocks should be used
This increased configuration space further motivates rethinking DefaultGemmConfigurations.
Introduction to the CollectiveBuilder
-------------------------------------
CUTLASS 3 introduces the CollectiveBuilder to further ease the process of selecting template parameters
for kernels targeting Hopper. Similar to the DefaultGemmConfigurations used in CUTLASS 2, the CollectiveBuilder
takes in a small set of template parameters (e.g., the data types of operands A and B). It then automatically
determines the data loading strategy to use depending on whether the Hopper TMA feature can be used with the provided
parameters. If one does not indicate a particular scheduling policy or stage count to use (by using `Auto` template
parameters), the CollectiveBuilder will also automatically select these.
Unlike DefaultGemmConfigurations a partial specialization of the CollectiveBuilder is not needed for many
configurations of operand types. Instead the CollectiveBuilder "builds" a configuration based on generic
properties of the specified operands, layouts, and other parameters. For example, when the stage count
is set to `Auto`, the CollectiveBuilder may automatically calculate the maximum number of stages that
will fit in shared memory given the types of operands and the thread block shape, rather than simply using
a single default value.
CUTLASS 3.x provides builders for both collective mainloops and epilogues. The particular implementation of
the collective is specified via the schedule tags that corresond to the underlying collective's
dispatch policy. `gemm::collective::KernelScheduleAuto` and `epilogue::collective::EpilogueScheduleAuto`
are special cases of these schedules that allow the builder to also decide the dispatch policy for you,
therefore letting the builder pick the collective specialization.
CUTLASS builders make an attempt to pick the best schedule when `Auto` is provided such that the
assembled collectives have the best performance, but this is not a guarantee. A user relying on `Auto`
may get a free performance upgrade with newer CUTLASS releases in case we can provide more optimized
implementations that the builder can transparently assemble for `Auto`. But a user should not rely on
`Auto` if they require a specific scheduling policy and/or stage count to be used.
If a user decides to let the builders pick the collective specialization via `Auto` schedules,
they must be used for both mainloop and epilogue alike to ensure compatibility between the
chosen collectives. Additionally, if a user chooses to opt in to a specific schedule, non-`Auto`
schedules must be used for both mainloop and epilogue builder schedules, and these schedules
must be compatible.
One does not need to use the CollectiveBuilder to declare CUTLASS 3 kernels; one can still provide
every template parameter to the `gemm::collective::CollectiveMma`. Specifying every template parameter
in this manner remains the primary API for using CUTLASS 3 kernels. `CollectiveBuilder`s are
simply meant to be a convenience interface.
Details of this example
-----------------------
This example walks through the use of the CollectiveBuilder with various schedules and stage counts specified.
This example also illustrates how CUTLASS 3 GEMMs targeting Hopper automatically support batched GEMMs by simply
extending the problem size with an additional tensor rank.
CUTLASS 3.2 provides initial support for epilogue visitor trees (EVT) for the TMA warp-specialized collective.
EVTs allow users to define their own customized epilogue fusion patterns without having to write a new
collective epilogue. This is done by representing the fusion as a compute graph, where each node is one of a
fundamental set of load, store, or compute operations. These operations are either elementwise for tensor
inputs/outputs, broadcasts for vector/scalar inputs, or reductions for vector/scalar outputs.
This example shows how users can define their own custom EVT and use it with the CollectiveBuilder.
Example usage:
$ ./examples/49_hopper_with_collective_builder/49_collective_builder \
--m=2048 --n=2048 --k=2048 --l=2
*/
#include <iostream>
#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm_complex.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/device/tensor_fill.h"
using namespace cute;
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Command line options parsing
struct Options {
bool help;
bool error;
int m, n, k, l;
float alpha, beta;
Options():
help(false),
error(false),
m(2048), n(2048), k(2048), l(1),
alpha(1.f), beta(0.f)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("m", m, 2048);
cmd.get_cmd_line_argument("n", n, 2048);
cmd.get_cmd_line_argument("k", k, 2048);
cmd.get_cmd_line_argument("l", l, 1);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "49_hopper_with_collective_builder\n\n"
<< " This example showcases the use of CUTLASS's collective operation builders to easily construct\n"
<< " performant kernels targeting NVIDIA's Hopper architecture.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n\n";
return out;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to initialize a block of device data
template <class Element>
bool initialize_block(
cutlass::DeviceAllocation<Element>& block,
uint64_t seed=2023) {
Element scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::device::BlockFillRandomUniform(
block.get(), block.size(), seed, scope_max, scope_min, 0);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
// Wrapper to construct, run, and verify a GEMM. This example showcases CUTLASS's collective
// operation builders by specializing the GEMM only on the kernel schedule it will use and the
// number of pipeline stages.
//
// One can use a special `Auto` type that tells the CollectiveBuilder
// to select an appropriate value on its own. The CollectiveBuilder will attempt to select
// configurations that will result in the most-performant kernel, but this is not a guarantee.
//
// If relying on 'Auto' schedules, all builders must use the 'Auto' schedule to ensure compatiblity.
// For example, if `KernelScheduleAuto` is used for the mainloop builder, `EpilogueScheduleAuto` must
// be used for the epilogue builder.
//
// Furthermore, if an override schedule is selected, both epilogue and mainloop schedules must
// be specifically opt into a compatible selection.
//
// Behavior of the CollectiveBuilder with `Auto` types is subject to change in future releases
// -- do not rely on `Auto` if you require a specific scheduling policy.
template <
// Type of kernel schedule to generate
class MainloopScheduleType = cutlass::gemm::collective::KernelScheduleAuto,
// Type of epilogue schedule to generate
class EpilogueScheduleType = cutlass::epilogue::collective::EpilogueScheduleAuto,
// Number of pipeline stages to use
class StageCountType = cutlass::gemm::collective::StageCountAuto,
// Type of tile scheduler to use
class TileSchedulerType = cutlass::gemm::PersistentScheduler,
// Do we use custom epilogue visitor tree (EVT) fusion
bool UseCustomEVT = false
>
struct ExampleRunner {
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::ColumnMajor;
using LayoutD = cutlass::layout::ColumnMajor;
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementD = cutlass::half_t;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementScalar = float;
// 16B alignment lets us use TMA
static constexpr int AlignmentA = 16 / sizeof(ElementA);
static constexpr int AlignmentB = 16 / sizeof(ElementB);
static constexpr int AlignmentC = 16 / sizeof(ElementC);
static constexpr int AlignmentD = 16 / sizeof(ElementD);
static_assert(not UseCustomEVT ||
(cute::is_same_v<EpilogueScheduleType, cutlass::epilogue::TmaWarpSpecialized> ||
cute::is_same_v<EpilogueScheduleType, cutlass::epilogue::TmaWarpSpecializedCooperative>),
"Epilogue visitor trees are currently only supported by the TMA warp-specialized epilogue");
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
// EVTs can be constructed by composing the fundamental load/store/compute visitor operations defined in include/cutlass/epilogue/fusion
// For more complex examples of EVT construction please refer to include/cutlass/epilogue/fusion/sm90_callbacks_tma_warpspecialized.hpp
using CustomEVT = // alpha * acc + beta * C
cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90Compute<cutlass::homogeneous_multiply_add, ElementD, ElementCompute, RoundStyle>, // beta * C + (alpha * acc)
cutlass::epilogue::fusion::Sm90ScalarBroadcast<ElementScalar>, // beta
cutlass::epilogue::fusion::Sm90SrcFetch<ElementC>, // C
cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90Compute<cutlass::multiplies, ElementCompute, ElementCompute, RoundStyle>, // alpha * acc
cutlass::epilogue::fusion::Sm90ScalarBroadcast<ElementScalar>, // alpha
cutlass::epilogue::fusion::Sm90AccFetch // acc
>
>;
// A predefined set of fusion operations (implemented with EVT) are supported by the TMA warp-specialized epilogue.
// Users can select one of these operations by passing one of the tags defined in include/cutlass/epilogue/fusion/operations.hpp
// to the CollectiveBuilder. This frees the user from having to compute additional parameters such as stage counts and copy atoms/layouts.
// These tags also provide additional metadata that can be queried at compile time.
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
Shape<_128,_128,_64>, Shape<_1,_1,_1>,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementCompute,
ElementC, LayoutC, AlignmentC,
ElementD, LayoutD, AlignmentD,
EpilogueScheduleType,
cute::conditional_t<UseCustomEVT, CustomEVT, DefaultOperation>
>::CollectiveOp;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementA, LayoutA, AlignmentA,
ElementB, LayoutB, AlignmentB,
ElementAccumulator,
Shape<_128,_128,_64>, Shape<_2,_1,_1>,
cute::conditional_t<cute::is_same_v<StageCountType, cutlass::gemm::collective::StageCountAuto>,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
StageCountType>,
MainloopScheduleType
>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int,int,int,int>,
CollectiveMainloop,
CollectiveEpilogue,
TileSchedulerType
>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
using LayoutTagA = cutlass::gemm::detail::StrideToLayoutTagA_t<StrideA>;
using LayoutTagB = cutlass::gemm::detail::StrideToLayoutTagB_t<StrideB>;
using LayoutTagC = cutlass::gemm::detail::StrideToLayoutTagC_t<StrideC>;
using LayoutTagD = cutlass::gemm::detail::StrideToLayoutTagC_t<StrideD>;
//
// Data members
//
/// Initialization
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
uint64_t seed = 0;
cutlass::DeviceAllocation<typename Gemm::ElementA> block_A;
cutlass::DeviceAllocation<typename Gemm::ElementB> block_B;
cutlass::DeviceAllocation<typename Gemm::ElementC> block_C;
cutlass::DeviceAllocation<typename Gemm::ElementD> block_D;
cutlass::DeviceAllocation<typename Gemm::ElementD> block_ref_D;
//
// Methods
//
bool verify(const ProblemShapeType& problem_size, float alpha, float beta) {
auto [M, N, K, L] = problem_size;
cutlass::TensorRef ref_A(block_A.get(), Gemm::LayoutA::packed({M, K}));
cutlass::TensorRef ref_B(block_B.get(), Gemm::LayoutB::packed({K, N}));
cutlass::TensorRef ref_C(block_C.get(), Gemm::LayoutC::packed({M, N}));
cutlass::TensorRef ref_D(block_ref_D.get(), Gemm::LayoutD::packed({M, N}));
cutlass::reference::device::GemmComplex(
{M, N, K},
ElementScalar(alpha),
ref_A,
cutlass::ComplexTransform::kNone,
ref_B,
cutlass::ComplexTransform::kNone,
ElementScalar(beta),
ref_C,
ref_D,
ElementAccumulator(0),
L, // batch_count
M * K, // batch_stride_A
K * N, // batch_stride_B
M * N, // batch_stride_C
M * N // batch_stride_D
);
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "Reference kernel failed. Last CUDA error: "
<< cudaGetErrorString(result) << std::endl;
return false;
}
// Check if output from CUTLASS kernel and reference kernel are equal or not
bool passed = cutlass::reference::device::BlockCompareEqual(block_ref_D.get(), block_D.get(), block_D.size());
return passed;
}
/// Initialize operands to be used in the GEMM and reference GEMM
void initialize(const ProblemShapeType& problem_size) {
auto problem_shape_MNKL = cute::append<4>(problem_size, 1);
auto [M, N, K, L] = problem_shape_MNKL;
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L));
block_A.reset(M * K * L);
block_B.reset(K * N * L);
block_C.reset(M * N * L);
block_D.reset(M * N * L);
block_ref_D.reset(M * N * L);
initialize_block(block_A, seed + 2023);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2021);
}
bool run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) {
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l};
initialize(problem_size);
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
{block_A.get(), stride_A, block_B.get(), stride_B},
{{}, // epilogue.thread
block_C.get(), stride_C, block_D.get(), stride_D},
hw_info
};
// Custom EVT fusions will have nested unnamed args, the structure of which
// can be deduced from the type definition of the EVT.
// Each node's arguments has the recursive structure of
// {first_child_args, ..., last_child_args, op_args},
// For more complex examples of EVT initialization please refer to
// include/cutlass/epilogue/fusion/sm90_callbacks_tma_warpspecialized.hpp
if constexpr (UseCustomEVT) {
arguments.epilogue.thread =
{ // ternary op : beta * C + (alpha * acc)
{{options.beta}}, // leaf op+args : beta
{}, // leaf op+args : C
{ // binary op : alpha * acc
{{options.alpha}}, // leaf op+args : alpha
{}, // leaf op+args : acc
{} // binary args : multiplies
}, // end binary op
{} // ternary args : multiply_add
}; // end ternary op
}
// Pre-defined fusions will have flat, named args for user-friendlyness
else {
arguments.epilogue.thread.alpha = options.alpha;
arguments.epilogue.thread.beta = options.beta;
}
Gemm gemm_op;
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
cutlass::Status status = gemm_op.can_implement(arguments);
if (status != cutlass::Status::kSuccess) {
std::cerr << "This kernel is not supported. Last CUDA error is: "
<< cudaGetErrorString(cudaGetLastError()) << std::endl;
return false;
}
status = gemm_op.initialize(arguments, workspace.get());
if (status != cutlass::Status::kSuccess) {
std::cerr << "Failed to initialize the CUTLASS kernel. Last CUDA error is: "
<< cudaGetErrorString(cudaGetLastError()) << std::endl;
return false;
}
// Run the GEMM
status = gemm_op.run();
if (status != cutlass::Status::kSuccess) {
std::cerr << "Failed to launch the CUTLASS kernel. Last CUDA error is: "
<< cudaGetErrorString(cudaGetLastError()) << std::endl;
return false;
}
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "Error running the CUTLASS kernel. Last CUDA error is: "
<< cudaGetErrorString(result) << std::endl;
return false;
}
// Verify that the result is correct
bool passed = verify(problem_size, options.alpha, options.beta);
if (!passed) {
std::cerr << "Reference check failed" << std::endl;
}
return passed;
}
};
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to print a description of the example run and its result
void print_result(const std::string& description, bool passed) {
std::cout << description << ": " << (passed ? "Passed" : "Failed") << std::endl;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (__CUDACC_VER_MAJOR__ < 12 || props.major < 9) {
std::cout
<< "This example requires a GPU of NVIDIA's Hopper Architecture or "
<< "later (compute capability 90 or greater) and CUDA 12.0 or greater.\n";
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (options.error) {
std::cerr << "Aborting execution." << std::endl;
return -1;
}
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
//
// Run examples
//
// The KernelHardwareInfo struct holds the number of SMs on the GPU with a given device ID. This
// information is used by the underlying kernel.
cutlass::KernelHardwareInfo hw_info;
// Change device_id to another value if you are running on a machine with multiple GPUs and wish
// to use a GPU other than that with device ID 0.
hw_info.device_id = 0;
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
bool passed;
// This first example constructs a GEMM using the default schedule and stage count provided by
// the CollectiveBuilder. The scheduling policy that is expected to be most performant will be
// selected and the maximum number of stages that can fit in shared memory will be selected.
//
// This example is equivalent to declaring
// ExampleRunner<
// cutlass::gemm::collective::KernelScheduleAuto,
// cutlass::epilogue::collective::EpilogueScheduleAuto,
// cutlass::gemm::collective::StageCountAuto>
// Each of the `Auto` types indicate that the CollectiveBuilder should determine the scheduling policy and
// stage count. Note that the behavior of the CollectiveBuilder with `Auto` parameters is subject to change
// -- do not rely on `Auto` if you require a specific scheduling policy.
// If you opt in to a non-'Auto' schedule, make sure all collectives are built using specific, compatible schedules.
ExampleRunner<> auto_schedule_auto_stage_runner;
passed = auto_schedule_auto_stage_runner.run(options, hw_info);
print_result("Automatically-selected schedule and stage count", passed);
// One can override the stage count used in the GEMM by replacing cutlass::gemm::collective::StageCountAuto
// with the number of stages to use (5 in this case).
ExampleRunner<
cutlass::gemm::collective::KernelScheduleAuto,
cutlass::epilogue::collective::EpilogueScheduleAuto,
_5> auto_schedule_5_stage_runner;
passed = auto_schedule_5_stage_runner.run(options, hw_info);
print_result("Automatically-selected schedule with 5 stages", passed);
// One can also override the scheduling policy to use. In this case, use the KernelTma scheduling
// policy, which specifies that the Hopper TMA feature should be used, and we also use an epilogue
// that does not use any shared memory.
ExampleRunner<cutlass::gemm::KernelTma, cutlass::epilogue::NoSmemWarpSpecialized> tma_schedule_auto_stage_runner;
passed = tma_schedule_auto_stage_runner.run(options, hw_info);
print_result("TMA schedule with automatically-selected stage count", passed);
// Here, we override the scheduling policy to use Hopper's TMA feature alongside the warp-specialized
// scheduling policy, and an epilogue that does not use any shared memory.
ExampleRunner<cutlass::gemm::KernelTmaWarpSpecialized, cutlass::epilogue::NoSmemWarpSpecialized> ws_schedule_auto_stage_runner;
passed = ws_schedule_auto_stage_runner.run(options, hw_info);
print_result("Warp-specialized TMA schedule with automatically-selected stage count", passed);
// Here, we override the scheduling policy to use Hopper's TMA feature, alongside the warp-specialized
// scheduling policy, TMA-based epilogue, leveraging persistent thread blocks.
ExampleRunner<
cutlass::gemm::KernelTmaWarpSpecializedPingpong,
cutlass::epilogue::TmaWarpSpecialized> ws_pingpong_schedule_auto_stage_runner;
passed = ws_pingpong_schedule_auto_stage_runner.run(options, hw_info);
print_result("Ping-pong warp-specialized TMA schedule with automatically-selected stage count", passed);
// Here, we override the scheduling policy to use stream-K problem decomposition atop the cooperative
// warp-specialized scheduling policy. This kernel continues to leverage persistent thread blocks
// as well aso TMA in both the mainloop and epilogue.
ExampleRunner<
cutlass::gemm::KernelTmaWarpSpecializedCooperative,
cutlass::epilogue::TmaWarpSpecializedCooperative,
cutlass::gemm::collective::StageCountAuto,
cutlass::gemm::StreamKScheduler> ws_cooperative_stream_k_schedule_auto_stage_runner;
passed = ws_cooperative_stream_k_schedule_auto_stage_runner.run(options, hw_info);
print_result("Cooperative warp-specialized TMA schedule using stream-K with automatically-selected stage count", passed);
// Here, we override the fusion operation to use a customized EVT fusion, in addition to the previous schedule overrides
ExampleRunner<
cutlass::gemm::KernelTmaWarpSpecializedCooperative,
cutlass::epilogue::TmaWarpSpecializedCooperative,
cutlass::gemm::collective::StageCountAuto,
cutlass::gemm::PersistentScheduler,
true> ws_cooperative_schedule_auto_stage_custom_evt_runner;
passed = ws_cooperative_schedule_auto_stage_custom_evt_runner.run(options, hw_info);
print_result("Cooperative warp-specialized TMA schedule using custom epilogue visitor tree with automatically-selected stage count", passed);
#endif
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////