-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnifty_funs.lisp
221 lines (192 loc) · 6.42 KB
/
nifty_funs.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(defpackage :nifty-funs
(:use :cl)
(:export #:full-mapcar)
(:export #:rdc)
(:export #:fact-tr)
(:export #:fib-tr)
(:export #:list-gen)
(:export #:average)
(:export #:prime-factors)
(:export #:eratosthenes-sieve)
(:export #:sieve5)
(:export #:palindromep)
(:export #:digits)
(:export #:stigid)
(:export #:divisors)
(:export #:split)
(:export #:list=)
(:export #:readlines)
(:export #:euler-totient)
(:export #:pandigital)
(:export #:permutations)
(:export #:choose)
(:export #:perms))
(provide :nifty-funs)
(in-package :nifty-funs)
;;; fully recursive implementation of mapcar
(defun full-mapcar (function list)
(cond ((null list) nil)
((listp (car list)) (cons (full-mapcar function (car list)) (full-mapcar function (cdr list))))
(t (cons (funcall function (car list)) (full-mapcar function (cdr list))))))
;;; opposite of cdr
(defun rdc (list)
(remove (car (last list)) list :from-end t :count 1))
(defun fact-tr (n &optional (acc 1))
(if (<= n 1)
acc
(fact-tr (- n 1) (* acc n))))
(defun fib-tr (n &optional (next 1) (current 0))
(if (= 0 n)
current
(fib-tr (- n 1) (+ current next) next)))
(defun average (list)
(/ (loop for x in list sum x) (length list)))
(defun list-gen (start end)
(loop for x from start to end collecting x))
(defun prime-factors (n)
(when (> n 1)
(do ((x 2 (1+ x)))
((zerop (mod n x))
(cons x (prime-factors (/ n x)))))))
(defun eratosthenes-sieve (n &optional (composites nil) (primes nil))
(cond ((and (null composites) (null primes))
(eratosthenes-sieve n (loop for x from 2 to n collecting x)))
((null composites) primes)
(t (let ((new-prime (car composites)))
(eratosthenes-sieve n (remove-if #'(lambda (x) (if (= 0 (mod x new-prime)) t nil)) composites) (cons new-prime primes))))))
;; Roger Corman's Sieve function from Corman Lisp examples
(defun sieve5 (n)
"Returns a list of all primes from 2 to n"
(declare (fixnum n) (optimize (speed 3) (safety 0)))
(let* ((a (make-array n :element-type 'bit :initial-element 0))
(result (list 2))
(root (isqrt n)))
(declare (fixnum root))
(do ((i 3 (the fixnum (+ i 2))))
((>= i n) (nreverse result))
(declare (fixnum i))
(progn (when (= (sbit a i) 0)
(push i result)
(if (< i root)
(do* ((inc (+ i i))
(j (* i i) (the fixnum (+ j inc))))
((>= j n))
(declare (fixnum j inc))
(setf (sbit a j) 1))))))))
(defun erat (n)
(let ((primes (list-gen 2 n)))
(loop for x in primes
for nprime = (pop primes)
collecting nprime
do (setq primes (remove-if #'(lambda (y) (= (mod y nprime) 0)) primes)))))
(defun newerat (n)
(labels ((aux (primes composites)
(if (null composites)
primes
(aux (cons (car composites) primes) (remove-if #'(lambda (y) (= (mod y (car composites)) 0)) composites)))))
(aux '() (list-gen 2 n))))
(defun palindromep (string)
(cond ((= 0 (length string)) t)
((= 1 (length string)) t)
((eql (elt string 0) (elt string (- (length string) 1)))
(if (= 2 (length string))
t
(palindromep (subseq string 1 (- (length string) 1)))))))
;;; Less efficient, simpler though
(defun rpalindromep (string)
(string= string (reverse string)))
(defun digits (num)
(map 'list #'(lambda (char) (read-from-string (string char))) (prin1-to-string num)))
(defun stigid (list)
(values (parse-integer (format nil "~{~a~^~}" list))))
(defun divisors (x)
(remove-duplicates
(loop for y from 1 to (sqrt x)
for z = (/ x y)
when (integerp z) collect y and collect z)))
;;; Doesn't work perfectly yet, improperly parses strings with multiple delimiters
;;; (split "1,,,3" #\, #'parse-integer) SHOULD return (1 nil nil 3) but returns (1 3)
(defun split (line delim parse-as)
(let ((lst nil))
(labels ((helper (line delim parse-as lst)
(cond ((string= line "") lst)
(t
(let ((idx (position delim line)))
(push (funcall parse-as (subseq line 0 idx)) lst)
(if (null idx)
(nreverse lst)
(helper (string-trim (write-to-string delim) (subseq line idx))
delim parse-as lst)))))))
(helper line delim parse-as lst))))
;(defun list= (lst &rest more-lists &key (test #'=))
(defun list= (lst &rest more-lists)
; (print more-lists)
(if (null (car more-lists))
t
(if (equal lst (car more-lists))
(list= lst (car (cdr more-lists)))
nil)))
; (mapc #'(lambda (x &rest y)
; (if (not (apply #'= (cons x y))) (return-from list= nil))) lst (apply #'append more-lists))))
;;;; Stuff from CS 440
(defun pset (lst)
(if (null lst) '(())
(let ((hd (car lst))
(tl (pset (cdr lst))))
(append tl (mapcar #'(lambda (ll) (cons hd ll)) tl)))))
(defun pset-tr (lst)
(labels ((aux (lst nlst)
(if (null lst)
nlst
(let ((hd (car lst))
(tl (cdr lst)))
(aux tl (append nlst (mapcar #'(lambda (ll) (cons hd ll)) nlst)))))))
(aux lst '(()))))
(defun permutations (list)
"Return a list of all the permutations of the input."
(if (null list)
'(())
(mapcan #'(lambda (e)
(mapcar #'(lambda (p) (cons e p))
(permutations
(remove e list :count 1))))
list)))
(defun readlines (path &optional (fn #'identity))
"Sucks up an entire file from PATH into a list of freshly-allocated
strings, returning two values: the list of strings and the number of
lines read."
(with-open-file (s path)
(loop for line = (read-line s nil nil)
and line-count from 0
while line
collect (funcall fn line) into lines
finally (return (values lines line-count)))))
(defun euler-totient (n)
"Returns the euler-totient, and the coprimes that count the totient
for any number n"
(let ((coprimes (loop for x from 1 to n when (= 1 (gcd x n)) collect x)))
(values (length coprimes) coprimes)))
(defun part-k-n (k n)
(let ((cache (make-hash-table :test #'equal)))
(labels ((aux (k n cache)
(multiple-value-bind (val win) (gethash (list k n) cache)
(if win
val
(setf (gethash (list k n) cache)
(cond ((> k n) 0)
((= k n) 1)
(t (+ (part-k-n (+ k 1) n) (part-k-n k (- n k))))))))))
(aux k n cache))))
(defun pandigital (n digits)
(cond ((not (= (length digits) (length (digits n))))
nil)
(t
(loop for x in (digits n)
do (setq digits (delete x digits)))
(if (null digits)
t
nil))))
(defun choose (n r)
(/ (fact-tr n) (* (fact-tr (- n r)) (fact-tr r))))
(defun perms (n r)
(/ (fact-tr n) (fact-tr (- n r))))