-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
131 lines (117 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Train our RNN on extracted features or images.
"""
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time
import datetime
import os.path
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.layers import Input, Dense, Flatten, Activation, Dropout, Bidirectional, Permute, multiply
#from tensorflow.keras.layers.recurrent import LSTM
#from keras.callbacks import CSVLogger
from keras import backend as K
from keras.layers import Input, Dense, Flatten, Activation, Dropout, Bidirectional, Permute, multiply
from keras.layers.recurrent import LSTM
import tensorflow as tf
from keras.models import Sequential
from keras.layers import *
#from keras.callbacks import CSVLogger
from keras import backend
from keras import backend as K
#K.set_image_dim_ordering('tf')
def train(data_type, seq_length, model, saved_model=None,
class_limit=None, image_shape=None,
load_to_memory=False, batch_size=32, nb_epoch=10):
# Helper: Save the model.
#filepath = os.path.join('data', 'checkpoints', model + '-' + data_type + \
# '.{epoch:03d}-{val_loss:.3f}.hdf5')
# filepath = os.path.join('data', 'checkpoints', model + '-' + data_type + str(seq_length) + \
# '.{epoch:03d}-{val_acc:.3f}.hdf5')
filepath = os.path.join('/media/DDD', model + '-' + data_type + str(seq_length) + \
'.{epoch:03d}-{val_acc:.4f}.hdf5')
# filepath = os.path.join('/media/DDD/dairy27',
# model + '-' + data_type + str(seq_length) + \
# 'best.hdf5')
checkpointer = ModelCheckpoint(filepath,monitor='val_acc',verbose=1,save_best_only=True, mode='max',period=5)
# Helper: TensorBoard
tb = TensorBoard(log_dir=os.path.join('data', 'logs', model))
# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=50)
# Helper: Save results.
timestamp = time.time()
csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'training-' + \
str(timestamp) + '.log'))
# Get the data and process it.
if image_shape is None:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit
)
else:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit,
image_shape=image_shape
)
# Get samples per epoch.
# Multiply by 0.7 to attempt to guess how much of data.data is the train set.
steps_per_epoch = (len(data.data) * 0.7) // batch_size
if load_to_memory:
# Get data.
X, y = data.get_all_sequences_in_memory('train', data_type)
X_test, y_test = data.get_all_sequences_in_memory('test', data_type)
else:
# Get generators.
generator = data.frame_generator(batch_size, 'train', data_type)
val_generator = data.frame_generator(batch_size, 'test', data_type)
# Get the model.
rm = ResearchModels(len(data.classes), model, seq_length, saved_model)
# Fit!
if load_to_memory:
# Use standard fit.
rm.model.fit(
X,
y,
batch_size=batch_size,
validation_data=(X_test, y_test),
verbose=1,
callbacks=[tb, early_stopper, csv_logger, checkpointer],
epochs=nb_epoch)
else:
# Use fit generator.
rm.model.fit_generator(
generator=generator,
steps_per_epoch=steps_per_epoch,
epochs=nb_epoch,
verbose=1,
callbacks=[tb, early_stopper, csv_logger, checkpointer],
validation_data=val_generator,
validation_steps=40)
def main():
"""These are the main training settings. Set each before running
this file."""
# model can be one of lstm, lrcn, mlp, conv_3d, c3d cnn_lstm_attentionbi
model = 'lstm'
saved_model =None #None # None or weights file
class_limit = None # int, can be 1-101 or None
seq_length = 30
load_to_memory = True # pre-load the sequences into memory
batch_size =10 #Bilstm20
nb_epoch = 1000
# Chose images or features and image shape based on network.
if model in ['conv_3d', 'c3d', 'lrcn', 'c3dLSTM']:
data_type = 'images'
image_shape = (112, 112,3)
elif model in ['lstm', 'lstmdouble','mlp','SimpleRNN','Bilstm','cnn_lstm_attention']:
data_type = 'features'
image_shape = None
else:
raise ValueError("Invalid model. See train.py for options.")
train(data_type, seq_length, model, saved_model=saved_model,
class_limit=class_limit, image_shape=image_shape,
load_to_memory=load_to_memory, batch_size=batch_size, nb_epoch=nb_epoch)
if __name__ == '__main__':
main()