A study of Metric and Framework Improving Fairness-utility Trade-off in Link Prediction
The dataset name must be specified in the "--dataset" argument
After downloaded the datasets, you can put them in the folder data/
like the following.
$ tree
.
├── Citeseer
│ ├── ind.citeseer.allx
│ ├── ...
│ └── ind.citeseer.y
├── Cora
│ ├── cora.cites
│ └── cora.contents
└── Facebook
├── facebook
│ ├── 0.circles
│ ├── ...
│ └── 3980.featnames
├── facebook_combinded.txt
└── readme-Ego.txt
# Citeseer
python main.py --n_epochs 200 --device cuda:2 --adv True --alpha 1 --beta 0 --dataset citeseer --fairdrop_term 30
# Cora
python main.py --n_epochs 200 --device cuda:0 --adv True --alpha 1 --beta 0 --dataset cora --fairdrop_term 10
# Facebook
python main.py --n_epochs 200 --device cuda:1 --adv True --alpha 0.8 --beta 0 --dataset facebook --fairdrop_term 10
Please cite our paper if you use the code:
@article{yang2023fairu,
title={A Study of Metric and Framework Improving Fairness-utility Trade-off in Link Prediction},
author={Heeyoon Yang, YongHoon Kang, Gahyung Kim, Jiyoung Lim, SuHyun Yoon, Ho Seung Kim, Jee-Hyong Lee},
journal={Journal of KIISE},
year={2023},
doi={10.5626/JOK.2023.50.2.179}
}