-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
109 lines (88 loc) · 4.15 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from torch.autograd import Variable
import torch
import torch.optim as optim
from datetime import datetime, timedelta
from data import LipreadingDataset
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import torch.nn as nn
import os
import pdb
import math
import numpy as np
#from apex.fp16_utils import FP16_Optimizer
def timedelta_string(timedelta):
totalSeconds = int(timedelta.total_seconds())
hours, remainder = divmod(totalSeconds,60*60)
minutes, seconds = divmod(remainder,60)
return "{:0>2} hrs, {:0>2} mins, {:0>2} secs".format(hours, minutes, seconds)
def output_iteration(loss, i, time, totalitems):
avgBatchTime = time / (i+1)
estTime = avgBatchTime * (totalitems - i)
print("Iteration: {:0>8},Elapsed Time: {},Estimated Time Remaining: {},Loss:{}".format(i, timedelta_string(time), timedelta_string(estTime),loss))
class Trainer():
tot_iter = 0
writer = SummaryWriter()
def __init__(self, options):
self.usecudnn = options["general"]["usecudnn"]
self.batchsize = options["input"]["batchsize"]
self.statsfrequency = options["training"]["statsfrequency"]
self.learningrate = options["training"]["learningrate"]
self.modelType = options["training"]["learningrate"]
self.weightdecay = options["training"]["weightdecay"]
self.momentum = options["training"]["momentum"]
self.save_prefix = options["training"]["save_prefix"]
self.trainingdataset = LipreadingDataset(options["training"]["data_root"],
options["training"]["index_root"],
options["training"]["padding"],
True)
self.trainingdataloader = DataLoader(
self.trainingdataset,
batch_size=options["input"]["batchsize"],
shuffle=options["input"]["shuffle"],
num_workers=options["input"]["numworkers"],
drop_last=True)
'''
def learningRate(self, epoch):
decay = math.floor((epoch - 1) / 5)
return self.learningrate * pow(0.5, decay)
'''
def __call__(self, model, epoch):
#set up the loss function.
model.train()
criterion = model.loss()
# if(self.usecudnn):
# net = nn.DataParallel(model).cuda()
net = model.cuda()#.half()
criterion = criterion.cuda()
optimizer = optim.Adam(
model.parameters(),
lr = self.learningrate, amsgrad=True)
#optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
#transfer the model to the GPU.
startTime = datetime.now()
print("Starting training...")
for i_batch, sample_batched in enumerate(self.trainingdataloader):
# continue
optimizer.zero_grad()
input = Variable(sample_batched['temporalvolume'])
labels = Variable(sample_batched['label'])
length = Variable(sample_batched['length'])
#print (type(input))
if(self.usecudnn):
input = input.cuda()#.half()
labels = labels.cuda()#.half()
#print (np.shape (input))
outputs = net(input)
loss = criterion(outputs, labels.squeeze(1))
loss.backward()
optimizer.step()
sampleNumber = i_batch * self.batchsize
if(sampleNumber % self.statsfrequency == 0):
currentTime = datetime.now()
output_iteration(loss.cpu().detach().numpy(), sampleNumber, currentTime - startTime, len(self.trainingdataset))
Trainer.writer.add_scalar('Train Loss', loss, Trainer.tot_iter)
Trainer.tot_iter += 1
#break
print("Epoch completed, saving state...")
torch.save(model.state_dict(), "{}_{:0>8}.pt".format(self.save_prefix, epoch))