-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_mnist.py
261 lines (242 loc) · 13.5 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import sys, os
import torch
import torch.nn as nn
import torch.nn.functional as F
from MCEVAE import MCEVAE
from utils import load_checkpoint
import argparse
def calc_loss(model, x, x_init, beta=1., n_sampel=4):
x_hat, z_var_q, z_var_q_mu, z_var_q_logvar, \
z_c_q, z_c_q_mu, z_c_q_logvar, z_c_q_L, tau_q, tau_q_mu, tau_q_logvar, x_rec, M = model(x)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = x.view(-1, model.in_size).to(device)
x_hat = x_hat.view(-1, model.in_size)
x_rec = x_rec.view(-1, model.in_size)
if model.rec_loss == 'mse':
RE = torch.sum((x - x_hat)**2)
if model.tau_size > 0 and model.training_mode == 'supervised':
RE_INV = torch.sum((x_rec - x_init)**2)
elif model.tau_size > 0 and model.training_mode == 'unsupervised':
RE_INV = torch.FloatTensor([0.]).to(device)
for jj in range(25):
with torch.no_grad():
x_arb = model.get_x_ref(x.view(-1,1,int(np.sqrt(model.in_size)),int(np.sqrt(model.in_size))), tau_q)
z_aug_arb = model.aug_encoder(x_arb)
z_c_q_mu_arb, z_c_q_logvar_arb, _ = model.q_z_c(z_aug_arb)
z_c_q_arb = model.reparameterize(z_c_q_mu_arb, z_c_q_logvar_arb).to(device)
z_var_q_mu_arb, z_var_q_logvar_arb = model.q_z_var(z_aug_arb)
z_var_q_arb = model.reparameterize(z_var_q_mu_arb, z_var_q_logvar_arb).to(device)
x_init, _ = model.reconstruct(z_var_q_arb, z_c_q_arb)
x_init = x_init.view(-1, model.in_size).to(device)
x_init = torch.clamp(x_init, 1.e-5, 1-1.e-5)
RE_INV = RE_INV + torch.sum((z_var_q_arb - z_var_q)**2)
RE_INV = RE_INV + torch.sum((z_c_q_arb - z_c_q)**2)
RE_INV = RE_INV + torch.sum((x_rec - x_init)**2)
RE_INV = RE_INV/25.0
else:
RE_INV = torch.FloatTensor([0.]).to(device)
elif model.rec_loss == 'bce':
x_hat = torch.clamp(x_hat, 1.e-5, 1-1.e-5)
x = torch.clamp(x, 1.e-5, 1-1.e-5)
x_init = torch.clamp(x_init, 1.e-5, 1-1.e-5)
x_rec = torch.clamp(x_rec, 1.e-5, 1-1.e-5)
RE = -torch.sum((x*torch.log(x_hat) + (1-x)*torch.log(1-x_hat)))
if model.tau_size > 0 and model.training_mode == 'supervised':
x_init = x_init.view(-1, model.in_size).to(device)
RE_INV = -torch.sum((x_init*torch.log(x_rec) + (1-x_init)*torch.log(1-x_rec)))
elif model.tau_size > 0 and model.training_mode == 'unsupervised':
RE_INV = torch.FloatTensor([0.]).to(device)
for jj in range(25):
with torch.no_grad():
x_arb = model.get_x_ref(x.view(-1,1,int(np.sqrt(model.in_size)),int(np.sqrt(model.in_size))), tau_q)
z_aug_arb = model.aug_encoder(x_arb)
z_c_q_mu_arb, z_c_q_logvar_arb, _ = model.q_z_c(z_aug_arb)
z_c_q_arb = model.reparameterize(z_c_q_mu_arb, z_c_q_logvar_arb).to(device)
z_var_q_mu_arb, z_var_q_logvar_arb = model.q_z_var(z_aug_arb)
z_var_q_arb = model.reparameterize(z_var_q_mu_arb, z_var_q_logvar_arb).to(device)
x_init, _ = model.reconstruct(z_var_q_arb, z_c_q_arb)
x_init = x_init.view(-1, model.in_size).to(device)
x_init = torch.clamp(x_init, 1.e-5, 1-1.e-5)
RE_INV = RE_INV + torch.sum((z_var_q_arb - z_var_q)**2)
RE_INV = RE_INV + torch.sum((z_c_q_arb - z_c_q)**2)
RE_INV = RE_INV - torch.sum((x_init*torch.log(x_rec) + (1-x_init)*torch.log(1-x_rec)))
RE_INV = RE_INV/25.0
else:
RE_INV = torch.FloatTensor([0.]).to(device)
else:
raise NotImplementedError
if z_var_q.size()[0] == 0:
log_q_z_var, log_p_z_var = torch.FloatTensor([0.]).to(device), torch.FloatTensor([0.]).to(device)
else:
log_q_z_var = -torch.sum(0.5*(1 + z_var_q_logvar))
log_p_z_var = -torch.sum(0.5*(z_var_q**2 ))
if tau_q.size()[0] == 0:
log_q_tau, log_p_tau = torch.FloatTensor([0.]).to(device), torch.FloatTensor([0.]).to(device)
else:
log_q_tau = -torch.sum(0.5*(1 + tau_q_logvar))
log_p_tau = -torch.sum(0.5*(tau_q**2 ))
if z_c_q.size()[0] == 0:
log_q_z_c, log_p_z_c = torch.FloatTensor([0.]).to(device), torch.FloatTensor([0.]).to(device)
else:
log_q_z_c = -torch.sum(0.5*(1 + z_c_q_logvar/model.latent_z_c + \
(model.latent_z_c -1)*z_c_q**2/model.latent_z_c))
log_p_z_c = -torch.sum(0.5*(z_c_q**2 )) + torch.sum(z_c_q)/model.latent_z_c
likelihood = - (RE + RE_INV)/x.shape[0]
divergence_c = (log_q_z_c - log_p_z_c)/x.shape[0]
divergence_var_tau = (log_q_z_var - log_p_z_var)/x.shape[0] + (log_q_tau - log_p_tau)/x.shape[0]
loss = - likelihood + beta * divergence_var_tau + divergence_c
return loss, RE/x.shape[0], divergence_var_tau, divergence_c
def train_epoch(data, model, optim, epoch, num_epochs, N, beta):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.train()
train_loss = 0
train_reco_loss= 0
train_div_var_tau = 0
train_div_c = 0
c = 0
for (x, x_init) in data:
b = x.size(0)
x = x.view(-1, 1, int(np.sqrt(model.in_size)), int(np.sqrt(model.in_size))).to(device).float()
optim.zero_grad()
loss, reco_loss, divergence_var_tau, divergence_c = calc_loss(model, x, x_init, beta = beta)
loss.backward()
optim.step()
c += 1
train_loss += loss.item()
train_reco_loss += reco_loss.item()
train_div_var_tau += divergence_var_tau.item()
train_div_c += divergence_c.item()
template = '# [{}/{}] training {:.1%}, ELBO={:.5f}, Reco Error={:.5f}, Disent KL={:.5f}, Ent KL={:.5f}'
line = template.format(epoch + 1, num_epochs, c / N, train_loss/c, train_reco_loss/c, train_div_var_tau/c, train_div_c/c)
print(line, end = '\r', file=sys.stderr)
print(' ' * 80, end = '\r', file=sys.stderr)
return train_loss/c, train_reco_loss/c, train_div_var_tau/c, train_div_c/c
def test_epoch(data, model, beta):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
train_loss = 0
train_reco_loss = 0
train_div_var_tau = 0
train_div_c = 0
c = 0
for (x, x_init) in data:
b = x.size(0)
x = x.view(-1, 1, int(np.sqrt(model.in_size)), int(np.sqrt(model.in_size))).to(device).float()
with torch.no_grad():
loss, reco_loss, divergence_var_tau, divergence_c = calc_loss(model, x, x_init, beta = beta)
c += 1
train_loss += loss.item()
train_reco_loss += reco_loss.item()
train_div_var_tau += divergence_var_tau.item()
train_div_c += divergence_c.item()
return train_loss/c, train_reco_loss/c, train_div_var_tau/c, train_div_c/c
def train(model, optim, train_data, test_data, num_epochs=20,
tr_mode='new', beta = 1.0):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
modelname = "model_{}_{}_dEnt_{}_ddisEnt_{}_{}_{}_{}_checkpoint".format(model.mode,
model.invariance_decoder,
model.latent_z_c,
model.latent_z_var,
model.tag,
model.training_mode,
model.rec_loss)
# print(modelname)
if tr_mode == 'resume' and os.path.exists('models/' + modelname):
print("Loading old model")
model, optim, epoch = load_checkpoint(model, optim, 'models/' + modelname)
train_loss_record = np.load('losses/trainloss_' + modelname.replace("_checkpoint", "") + ".npy")
test_loss_record = np.load('losses/testloss_' + modelname.replace("_checkpoint", "") + ".npy")
n_trainrecord_old = len(train_loss_record)
n_testrecord_old = len(test_loss_record)
train_loss_record = np.append(train_loss_record, np.zeros(num_epochs))
test_loss_record = np.append(test_loss_record, np.zeros(num_epochs))
else:
n_trainrecord_old = 0
n_testrecord_old = 0
train_loss_record = np.zeros(num_epochs)
test_loss_record = np.zeros(num_epochs)
print('training...')
N = len(train_data)
print(N)
RE_best = 10000
output = sys.stdout
for epoch in range(num_epochs):
train_loss, train_RE, train_div_var_tau, train_div_c = train_epoch(train_data, model,
optim, epoch, num_epochs, N, beta)
line = '\t'.join([str(epoch + 1), 'train', str(train_loss), str(train_RE), str(train_div_var_tau), str(train_div_c)])
print(line, file=output)
output.flush()
train_loss_record[n_trainrecord_old + epoch] = train_RE
test_loss, test_RE, test_div_var_tau, test_div_c = test_epoch(test_data, model, beta)
line = '\t'.join([str(epoch + 1), 'test', str(test_loss), str(test_RE), str(test_div_var_tau), str(test_div_c)])
print(line, file=output)
output.flush()
test_loss_record[n_testrecord_old + epoch] = test_RE
if abs(RE_best) > abs(train_RE):
RE_best = train_RE
state = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optim.state_dict()}
torch.save(state, 'models/' + modelname)
print('saving...')
np.save('losses/trainloss_' + modelname.replace("_checkpoint", ""), train_loss_record)
np.save('losses/testloss_' + modelname.replace("_checkpoint", ""), test_loss_record)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--transformation", help = "Transformation type: use so2 or se2", default = "so2")
parser.add_argument("--loss_type", help = "Reconstruction Loss type: use mse or bce", default = "bce")
parser.add_argument("--nCat", help = "Number of Categories", default = 10)
parser.add_argument("--nVar", help = "Number of Variational Latent Dimensions", default = 3)
parser.add_argument("--nBatch", help = "Batch size", default = 100)
parser.add_argument("--nEpochs", help = "Number of Epochs", default = 60)
parser.add_argument("--nHiddenCat", help = "Number of Nodes in Hidden Layers for Categorical Latent Space", default = 512)
parser.add_argument("--nHiddenVar", help = "Number of Nodes in Hidden Layers for Variational Latent Space", default = 512)
parser.add_argument("--nHiddenTrans", help = "Number of Nodes in Hidden Layers for Transformational Latent Space", default = 32)
parser.add_argument("--tag", help = "tag for model name", default = "default")
parser.add_argument("--training_mode", help = "Training mode: use supervised or unsupervised", default = "supervised")
parser.add_argument("--beta", help = "Beta for beta-VAE training", default = 1.0)
args = parser.parse_args()
print('loading data...')
transformation = str(args.transformation).lower()
mnist_SE2 = np.load('mnist_' + (transformation if transformation != 'none' else 'se2') +'_train.npy')
mnist_SE2_test = np.load('mnist_' + (transformation if transformation != 'none' else 'se2') +'_test.npy')[:1000]
mnist_SE2_init = np.load('mnist_init_' + (transformation if transformation != 'none' else 'se2') +'_train.npy')
mnist_SE2_init_test = np.load('mnist_init_' + (transformation if transformation != 'none' else 'se2') +'_test.npy')[:1000]
print('preparing dataset')
batch_size = int(args.nBatch)
trans_dataset = torch.utils.data.TensorDataset(torch.from_numpy(mnist_SE2), torch.from_numpy(mnist_SE2_init))
trans_loader = torch.utils.data.DataLoader(trans_dataset, batch_size=batch_size)
trans_test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(mnist_SE2_test),
torch.from_numpy(mnist_SE2_init_test))
trans_test_loader = torch.utils.data.DataLoader(trans_test_dataset, batch_size=batch_size)
in_size = aug_dim = 28*28
mode = transformation.upper()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tag = str(args.tag)
model = MCEVAE(in_size=in_size,
aug_dim=aug_dim,
latent_z_c=int(args.nCat),
latent_z_var=int(args.nVar),
mode=mode,
invariance_decoder='gated',
rec_loss=str(args.loss_type),
div='KL',
in_dim=1,
out_dim=1,
hidden_z_c=int(args.nHiddenCat),
hidden_z_var=int(args.nHiddenVar),
hidden_tau=int(args.nHiddenTrans),
activation=nn.Sigmoid,
training_mode=str(args.training_mode),
device = device,
tag = tag).to(device)
lr = 1e-3
optim = torch.optim.Adam(model.parameters(), lr=lr)
train(model = model,
optim = optim,
train_data = trans_loader,
test_data = trans_test_loader,
num_epochs = int(args.nEpochs),
tr_mode='new',
beta = float(args.beta))