forked from CVI-SZU/ME-GraphAU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_stage1.py
198 lines (170 loc) · 7.94 KB
/
train_stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
from tqdm import tqdm
import logging
from model.ANFL import MEFARG
from dataset import *
from utils import *
from conf import get_config, set_logger, set_outdir, set_env
def get_dataloader(conf):
print('==> Preparing data...')
if conf.dataset == 'BP4D':
trainset = BP4D(conf.dataset_path, train=True, fold=conf.fold, transform=image_train(
crop_size=conf.crop_size), crop_size=conf.crop_size, stage=1)
train_loader = DataLoader(
trainset, batch_size=conf.batch_size, shuffle=True, num_workers=conf.num_workers)
valset = BP4D(conf.dataset_path, train=False, fold=conf.fold,
transform=image_test(crop_size=conf.crop_size), stage=1)
val_loader = DataLoader(
valset, batch_size=conf.batch_size, shuffle=False, num_workers=conf.num_workers)
elif conf.dataset == 'DISFA':
trainset = DISFA(conf.dataset_path, train=True, fold=conf.fold, transform=image_train(
crop_size=conf.crop_size, img_size=conf.image_size), crop_size=conf.crop_size, stage=1)
if conf.weighted_sampling:
disfa_weight_map = {0: 1./877405., 1: 1./56642.,
2: 1./46597., 3: 1./45985., 4: 1./15936., 5: 1./3947.}
weights = get_sampler_weights(trainset.data_list, disfa_weight_map)
weights = torch.DoubleTensor(weights)
sampler = torch.utils.data.sampler.WeightedRandomSampler(
weights, len(weights))
train_loader = DataLoader(trainset, batch_size=conf.batch_size,
sampler=sampler, num_workers=conf.num_workers)
else:
train_loader = DataLoader(
trainset, batch_size=conf.batch_size, shuffle=True, num_workers=conf.num_workers)
valset = DISFA(conf.dataset_path, train=False, fold=conf.fold,
transform=image_test(crop_size=conf.crop_size, img_size=conf.image_size), stage=1)
val_loader = DataLoader(
valset, batch_size=conf.batch_size, shuffle=False, num_workers=conf.num_workers)
return train_loader, val_loader, len(trainset), len(valset)
# Train
def train(conf, net, train_loader, optimizer, epoch, criterion):
losses = AverageMeter()
net.train()
train_loader_len = len(train_loader)
for batch_idx, (inputs, targets) in enumerate(tqdm(train_loader)):
adjust_learning_rate(optimizer, epoch, conf.epochs,
conf.learning_rate, batch_idx, train_loader_len)
targets = targets.float()
if torch.cuda.is_available():
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
losses.update(loss.data.item(), inputs.size(0))
return losses.avg
# Val
def val(net, val_loader, criterion):
losses = AverageMeter()
mae_avg = AverageMeter()
mse_avg = AverageMeter()
mae_loss = nn.L1Loss()
mse_loss = nn.MSELoss()
net.eval()
statistics_list = None
for batch_idx, (inputs, targets) in enumerate(tqdm(val_loader)):
with torch.no_grad():
targets = targets.float()
if torch.cuda.is_available():
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets)
mae = mae_loss(outputs, targets)
mse = mse_loss(outputs, targets)
losses.update(loss.data.item(), inputs.size(0))
mae_avg.update(mae.data.item(), inputs.size(0))
mse_avg.update(mse.data.item(), inputs.size(0))
# update_list = statistics(outputs, targets.detach(), 0.5)
# statistics_list = update_statistics_list(
# statistics_list, update_list)
# mean_f1_score, f1_score_list = calc_f1_score(statistics_list)
# mean_acc, acc_list = calc_acc(statistics_list)
# return losses.avg, mean_f1_score, f1_score_list, mean_acc, acc_list
return losses.avg, mae_avg.avg, mse_avg.avg
def main(conf):
if conf.dataset == 'BP4D':
dataset_info = BP4D_infolist
elif conf.dataset == 'DISFA':
dataset_info = DISFA_infolist
start_epoch = 0
# data
train_loader, val_loader, train_data_num, val_data_num = get_dataloader(
conf)
train_weight = torch.from_numpy(np.loadtxt(os.path.join(
conf.dataset_path, 'list', conf.dataset+'_weight_fold'+str(conf.fold)+'.txt')))
logging.info("Fold: [{} | {} val_data_num: {} ]".format(
conf.fold, conf.N_fold, val_data_num))
net = MEFARG(num_classes=conf.num_classes, backbone=conf.arc,
neighbor_num=conf.neighbor_num, metric=conf.metric)
# resume
if conf.resume != '':
logging.info("Resume form | {} ]".format(conf.resume))
net = load_state_dict(net, conf.resume)
if torch.cuda.is_available():
net = nn.DataParallel(net).cuda()
train_weight = train_weight.cuda()
# criterion = WeightedAsymmetricLoss(weight=train_weight)
# criterion = WeightedMSELoss(weight=train_weight)
criterion = nn.MSELoss()
optimizer = optim.AdamW(net.parameters(), betas=(
0.9, 0.999), lr=conf.learning_rate, weight_decay=conf.weight_decay)
print('the init learning rate is ', conf.learning_rate)
best_val_loss = np.inf
# train and val
for epoch in range(start_epoch, conf.epochs):
lr = optimizer.param_groups[0]['lr']
logging.info("Epoch: [{} | {} LR: {} ]".format(
epoch + 1, conf.epochs, lr))
train_loss = train(conf, net, train_loader,
optimizer, epoch, criterion)
# val_loss, val_mean_f1_score, val_f1_score, val_mean_acc, val_acc = val(
# net, val_loader, criterion)
val_loss, val_mae, val_mse = val(
net, val_loader, criterion)
# log
# infostr = {'Epoch: {} train_loss: {:.5f} val_loss: {:.5f} val_mean_f1_score {:.2f},val_mean_acc {:.2f}'
# .format(epoch + 1, train_loss, val_loss, 100. * val_mean_f1_score, 100. * val_mean_acc)}
infostr = {'Epoch: {} train_loss: {:.5f} val_loss: {:.5f} val_mae: {:.5f} val_mse: {:.5f}'
.format(epoch + 1, train_loss, val_loss, val_mae, val_mse)}
logging.info(infostr)
# infostr = {'F1-score-list:'}
# logging.info(infostr)
# infostr = dataset_info(val_f1_score)
# logging.info(infostr)
# infostr = {'Acc-list:'}
# logging.info(infostr)
# infostr = dataset_info(val_acc)
# logging.info(infostr)
# save checkpoints
# if (epoch+1) % 4 == 0:
# checkpoint = {
# 'epoch': epoch,
# 'state_dict': net.state_dict(),
# 'optimizer': optimizer.state_dict(),
# }
# torch.save(checkpoint, os.path.join(
# conf['outdir'], 'epoch' + str(epoch + 1) + '_model_fold' + str(conf.fold) + '.pth'))
if (best_val_loss > val_loss):
best_val_loss = val_loss
checkpoint = {
'epoch': epoch,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(checkpoint, os.path.join(
conf['outdir'], 'epoch' + str(epoch + 1) + '_model_fold' + str(conf.fold) + '.pth'))
# ---------------------------------------------------------------------------------
if __name__ == "__main__":
conf = get_config()
set_env(conf)
# generate outdir name
set_outdir(conf)
# Set the logger
set_logger(conf)
main(conf)