-
Notifications
You must be signed in to change notification settings - Fork 3
/
engine_pretrain.py
146 lines (122 loc) · 5.33 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# --------------------------------------------------------------------------------
# Exploring the Role of Mean Teachers in Self-supervised Masked Auto-Encoders (ICLR'23)
# Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI).
# All Rights Reserved.
# Written by Youngwan Lee
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------------------------------
# Modified from MAE (https://github.com/facebookresearch/mae)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# --------------------------------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------------------------------
"""Components for pre-training script"""
import math
import sys
from typing import Iterable
import torch
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(
student: torch.nn.Module,
teacher: torch.nn.Module,
teacher_without_ddp: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
momentum_schedule,
log_writer=None,
args=None,
):
"""training step for each epoch"""
student.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"lr", misc.SmoothedValue(
window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}/{}]".format(epoch, args.epochs)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print("log_dir: {}".format(log_writer.log_dir))
for data_iter_step, (samples, _) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(
optimizer, data_iter_step / len(data_loader) + epoch, args
)
samples = samples.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
# ywlee
s_loss, s_pred, s_mask, ids_shuffle = student(
samples, mask_ratio=args.mask_ratio
)
with torch.no_grad():
teacher.eval()
t_pred = teacher(
samples,
mask_ratio=args.mask_ratio,
ids_shuffle=ids_shuffle)
# On the same masked inputs
# Including the masked / unmasked patches
# pred's shape : [N, L, p*p*3]
rec_cons_loss = (s_pred - t_pred.detach()) ** 2
rec_cons_loss = rec_cons_loss.mean(dim=-1) # [N, L], mean loss per patch
rec_cons_loss = (rec_cons_loss * s_mask).sum() / s_mask.sum() # mean loss on removed patches
loss = s_loss + args.gamma * rec_cons_loss
loss_value = loss.item()
s_loss_value = s_loss.item()
rec_cons_loss_value = rec_cons_loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(
loss,
optimizer,
parameters=student.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0,
)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
# EMA update for the teacher
with torch.no_grad():
ms = momentum_schedule[data_iter_step] # momentum parameter
for param_q, param_k in zip(
student.module.parameters(), teacher_without_ddp.parameters()
):
param_k.data.mul_(ms).add_((1 - ms) * param_q.detach().data)
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(s_loss=s_loss_value)
metric_logger.update(rec_cons_loss=rec_cons_loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
s_loss_value_reduce = misc.all_reduce_mean(s_loss_value)
rec_cons_loss_value_reduce = misc.all_reduce_mean(rec_cons_loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int(
(data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x)
log_writer.add_scalar("s_loss", s_loss_value_reduce, epoch_1000x)
log_writer.add_scalar(
"rec_cons_loss", rec_cons_loss_value_reduce, epoch_1000x
)
log_writer.add_scalar("lr", lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}