-
Notifications
You must be signed in to change notification settings - Fork 64
/
graph.go
260 lines (248 loc) · 6.45 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Package graph contains generic implementations of basic graph algorithms.
//
// Generic graph algorithms
//
// The algorithms in this library can be applied to any graph data
// structure implementing the two Iterator methods: Order, which returns
// the number of vertices, and Visit, which iterates over the neighbors
// of a vertex.
//
// All algorithms operate on directed graphs with a fixed number
// of vertices, labeled from 0 to n-1, and edges with integer cost.
// An undirected edge {v, w} of cost c is represented by the two
// directed edges (v, w) and (w, v), both of cost c.
// A self-loop, an edge connecting a vertex to itself,
// is both directed and undirected.
//
// Graph data structures
//
// The type Mutable represents a directed graph with a fixed number
// of vertices and weighted edges that can be added or removed.
// The implementation uses hash maps to associate each vertex
// in the graph with its adjacent vertices. This gives constant
// time performance for all basic operations.
//
// The type Immutable is a compact representation of an immutable graph.
// The implementation uses lists to associate each vertex in the graph
// with its adjacent vertices. This makes for fast and predictable
// iteration: the Visit method produces its elements by reading
// from a fixed sorted precomputed list. This type supports multigraphs.
//
// Virtual graphs
//
// The subpackage graph/build offers a tool for building virtual graphs.
// In a virtual graph no vertices or edges are stored in memory,
// they are instead computed as needed. New virtual graphs are constructed
// by composing and filtering a set of standard graphs, or by writing
// functions that describe the edges of a graph.
//
// Tutorial
//
// The Basics example shows how to build a plain graph and how to
// efficiently use the Visit iterator, the key abstraction of this package.
//
// The DFS example contains a full implementation of depth-first search.
//
package graph
import (
"sort"
"strconv"
)
// Iterator describes a weighted graph; an Iterator can be used
// to describe both ordinary graphs and multigraphs.
type Iterator interface {
// Order returns the number of vertices in a graph.
Order() int
// Visit calls the do function for each neighbor w of vertex v,
// with c equal to the cost of the edge from v to w.
//
// • If do returns true, Visit returns immediately, skipping
// any remaining neighbors, and returns true.
//
// • The calls to the do function may occur in any order,
// and the order may vary.
//
Visit(v int, do func(w int, c int64) (skip bool)) (aborted bool)
}
// The maximum and minimum value of an edge cost.
const (
Max int64 = 1<<63 - 1
Min int64 = -1 << 63
)
type edge struct {
v, w int
c int64
}
// String returns a description of g with two elements:
// the number of vertices, followed by a sorted list of all edges.
func String(g Iterator) string {
n := g.Order()
// This may be a multigraph, so we look for duplicates by counting.
count := make(map[edge]int)
for v := 0; v < n; v++ {
g.Visit(v, func(w int, c int64) (skip bool) {
count[edge{v, w, c}]++
return
})
}
edges := make([]edge, 0, len(count))
for e := range count {
edges = append(edges, e)
}
// Sort lexicographically on (v, w, c).
sort.Slice(edges, func(i, j int) bool {
v := edges[i].v == edges[j].v
w := edges[i].w == edges[j].w
switch {
case v && w:
return edges[i].c < edges[j].c
case v:
return edges[i].w < edges[j].w
default:
return edges[i].v < edges[j].v
}
})
// Build the string.
var buf []byte
buf = strconv.AppendInt(buf, int64(n), 10)
buf = append(buf, " ["...)
for _, e := range edges {
c := count[e]
if e.v < e.w {
// Collect edges in opposite directions into an undirected edge.
back := edge{e.w, e.v, e.c}
m := min(c, count[back])
count[back] -= m
buf = appendEdge(buf, e, m, true)
buf = appendEdge(buf, e, c-m, false)
} else {
buf = appendEdge(buf, e, c, false)
}
}
if len(edges) > 0 {
buf = buf[:len(buf)-1] // Remove trailing ' '.
}
buf = append(buf, ']')
return string(buf)
}
func appendEdge(buf []byte, e edge, count int, bi bool) []byte {
if count <= 0 {
return buf
}
if count > 1 {
buf = strconv.AppendInt(buf, int64(count), 10)
buf = append(buf, "×"...)
}
if bi {
buf = append(buf, '{')
} else {
buf = append(buf, '(')
}
buf = strconv.AppendInt(buf, int64(e.v), 10)
buf = append(buf, ' ')
buf = strconv.AppendInt(buf, int64(e.w), 10)
if bi {
buf = append(buf, '}')
} else {
buf = append(buf, ')')
}
if e.c != 0 {
buf = append(buf, ':')
switch e.c {
case Max:
buf = append(buf, "max"...)
case Min:
buf = append(buf, "min"...)
default:
buf = strconv.AppendInt(buf, e.c, 10)
}
}
buf = append(buf, ' ')
return buf
}
// Stats holds basic data about an Iterator.
type Stats struct {
Size int // Number of unique edges.
Multi int // Number of duplicate edges.
Weighted int // Number of edges with non-zero cost.
Loops int // Number of self-loops.
Isolated int // Number of vertices with outdegree zero.
}
// Check collects data about an Iterator.
func Check(g Iterator) Stats {
if g, ok := g.(*Immutable); ok {
return g.stats
}
_, mutable := g.(*Mutable)
n := g.Order()
degree := make([]int, n)
type edge struct{ v, w int }
edges := make(map[edge]bool)
var stats Stats
for v := 0; v < n; v++ {
g.Visit(v, func(w int, c int64) (skip bool) {
if w < 0 || w >= n {
panic("vertex out of range: " + strconv.Itoa(w))
}
if v == w {
stats.Loops++
}
if c != 0 {
stats.Weighted++
}
degree[v]++
if mutable { // A Mutable is never a multigraph.
stats.Size++
return
}
if edges[edge{v, w}] {
stats.Multi++
} else {
stats.Size++
}
edges[edge{v, w}] = true
return
})
}
for _, deg := range degree {
if deg == 0 {
stats.Isolated++
}
}
return stats
}
// Equal tells if g and h have the same number of vertices,
// and the same edges with the same costs.
func Equal(g, h Iterator) bool {
if g.Order() != h.Order() {
return false
}
edges := make(map[edge]int)
for v := 0; v < g.Order(); v++ {
g.Visit(v, func(w int, c int64) (skip bool) {
edges[edge{v, w, c}]++
return
})
if h.Visit(v, func(w int, c int64) (skip bool) {
if edges[edge{v, w, c}] == 0 {
return true
}
edges[edge{v, w, c}]--
return
}) {
return false
}
for _, n := range edges {
if n > 0 {
return false
}
}
}
return true
}
func min(x, y int) int {
if x < y {
return x
}
return y
}