forked from toandaominh1997/EfficientDet.Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
183 lines (170 loc) · 7.63 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import os
import numpy as np
import pandas as pd
import time
from torchvision.utils import make_grid
from utils import TensorboardWriter, MetricTracker
from torch.autograd import Variable
class Learning(object):
def __init__(self,
model,
criterion,
optimizer,
scheduler,
metric_ftns,
device,
num_epoch,
grad_clipping,
grad_accumulation_steps,
early_stopping,
validation_frequency,
tensorboard,
checkpoint_dir,
resume_path):
self.device, device_ids = self._prepare_device(device)
# self.model = model.to(self.device)
self.start_epoch = 1
if resume_path is not None:
self._resume_checkpoint(resume_path)
if len(device_ids) > 1:
# self.model = torch.nn.DataParallel(model, device_ids=device_ids)
self.model = torch.nn.DataParallel(model)
# cudnn.benchmark = True
self.model = model.cuda()
self.criterion = criterion
self.metric_ftns = metric_ftns
self.optimizer = optimizer
self.num_epoch = num_epoch
self.scheduler = scheduler
self.grad_clipping = grad_clipping
self.grad_accumulation_steps = grad_accumulation_steps
self.early_stopping = early_stopping
self.validation_frequency =validation_frequency
self.checkpoint_dir = checkpoint_dir
self.best_epoch = 1
self.best_score = 0
self.writer = TensorboardWriter(os.path.join(checkpoint_dir, 'tensorboard'), tensorboard)
self.train_metrics = MetricTracker('loss', writer = self.writer)
self.valid_metrics = MetricTracker('loss', *[m.__name__ for m in self.metric_ftns], writer = self.writer)
def train(self, train_dataloader):
score = 0
for epoch in range(self.start_epoch, self.num_epoch+1):
print("{} epoch: \t start training....".format(epoch))
start = time.time()
train_result = self._train_epoch(epoch, train_dataloader)
train_result.update({'time': time.time()-start})
for key, value in train_result.items():
print(' {:15s}: {}'.format(str(key), value))
# if (epoch+1) % self.validation_frequency!=0:
# print("skip validation....")
# continue
# print('{} epoch: \t start validation....'.format(epoch))
# start = time.time()
# valid_result = self._valid_epoch(epoch, valid_dataloader)
# valid_result.update({'time': time.time() - start})
# for key, value in valid_result.items():
# if 'score' in key:
# score = value
# print(' {:15s}: {}'.format(str(key), value))
score+=0.001
self.post_processing(score, epoch)
if epoch - self.best_epoch > self.early_stopping:
print('WARNING: EARLY STOPPING')
break
def _train_epoch(self, epoch, data_loader):
self.model.train()
self.optimizer.zero_grad()
self.train_metrics.reset()
for idx, (data, target) in enumerate(data_loader):
data = Variable(data.cuda())
target = [ann.to(self.device) for ann in target]
output = self.model(data)
loss = self.criterion(output, target)
loss.backward()
self.writer.set_step((epoch - 1) * len(data_loader) + idx)
self.train_metrics.update('loss', loss.item())
if (idx+1) % self.grad_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_clipping)
self.optimizer.step()
self.optimizer.zero_grad()
if (idx+1) % int(np.sqrt(len(data_loader))) == 0:
self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))
return self.train_metrics.result()
def _valid_epoch(self, epoch, data_loader):
self.valid_metrics.reset()
self.model.eval()
with torch.no_grad():
for idx, (data, target) in enumerate(data_loader):
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
loss = self.criterion(output, target)
self.writer.set_step((epoch - 1) * len(data_loader) + idx, 'valid')
self.valid_metrics.update('loss', loss.item())
for met in self.metric_ftns:
self.valid_metrics.update(met.__name__, met(output, target))
self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))
for name, p in self.model.named_parameters():
self.writer.add_histogram(name, p, bins='auto')
return self.valid_metrics.result()
def post_processing(self, score, epoch):
best = False
if score > self.best_score:
self.best_score = score
self.best_epoch = epoch
best = True
print("best model: {} epoch - {:.5}".format(epoch, score))
self._save_checkpoint(epoch = epoch, save_best = best)
if self.scheduler.__class__.__name__ == 'ReduceLROnPlateau':
self.scheduler.step(score)
else:
self.scheduler.step()
def _save_checkpoint(self, epoch, save_best=False):
"""
Saving checkpoints
:param epoch: current epoch number
:param save_best: if True, rename the saved checkpoint to 'model_best.pth'
"""
arch = type(self.model).__name__
state = {
'arch': arch,
'epoch': epoch,
'state_dict': self.get_state_dict(self.model),
'best_score': self.best_score
}
filename = os.path.join(self.checkpoint_dir, 'checkpoint_epoch{}.pth'.format(epoch))
torch.save(state, filename)
print("Saving checkpoint: {} ...".format(filename))
if save_best:
best_path = os.path.join(self.checkpoint_dir, 'model_best.pth')
torch.save(state, best_path)
print("Saving current best: model_best.pth ...")
@staticmethod
def get_state_dict(model):
if type(model) == torch.nn.DataParallel:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
return state_dict
def _resume_checkpoint(self, resume_path):
resume_path = str(resume_path)
print("Loading checkpoint: {} ...".format(resume_path))
checkpoint = torch.load(resume_path, map_location=lambda storage, loc: storage)
self.start_epoch = checkpoint['epoch'] + 1
self.best_epoch = checkpoint['epoch']
self.best_score = checkpoint['best_score']
self.model.load_state_dict(checkpoint['state_dict'])
print("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch))
@staticmethod
def _prepare_device(device):
n_gpu_use = len(device)
n_gpu = torch.cuda.device_count()
if n_gpu_use > 0 and n_gpu == 0:
print("Warning: There\'s no GPU available on this machine, training will be performed on CPU.")
n_gpu_use = 0
if n_gpu_use > n_gpu:
print("Warning: The number of GPU\'s configured to use is {}, but only {} are available on this machine.".format(n_gpu_use, n_gpu))
n_gpu_use = n_gpu
list_ids = device
device = torch.device('cuda:{}'.format(device[0]) if n_gpu_use > 0 else 'cpu')
return device, list_ids