-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexample.py
executable file
·78 lines (56 loc) · 2.25 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
from minimal_is_all_you_need import Transformer, ELMo, Bert, GPT, GPT_2, XLNet, TransformerXL, the_loss_of_bert, get_example_data
X, Y = get_example_data()
def main():
model = Bert()
model.compile('adam', loss=[the_loss_of_bert(0.1), 'binary_crossentropy'])
model.fit(X, Y)
model.predict(X)
# X1 = np.random.random((2, 3))
# X2 = np.random.random((2, 1))
# Y2 = np.random.random((2, 3, 1))
# model = TransformerXL()
# model.compile('adam', loss='sparse_categorical_crossentropy')
# model.fit([X1,X2], Y2, batch_size=2)
# X1 = np.random.random((100, 100))
# X2 = np.random.random((100, 100))
# Y1 = np.random.random((100, 100, 1))
# Y2 = np.random.random((100, 1))
# model = Transformer()
# model.compile('adam', loss='sparse_categorical_crossentropy')
# model.fit(X1, Y1)
# model.predict(X2)
# X1 = np.random.random((100, 100))
# X2 = np.random.random((100, 100))
# Y1 = np.random.random((100, 100, 100))
# Y2 = np.random.random((100, 1))
# model = GPT()
# model.compile('adam', loss='sparse_categorical_crossentropy')
# model.fit(X1, Y1)
# model.predict(X2)
# X1 = np.random.random((100, 100))
# X2 = np.random.random((100, 100))
# Y1 = np.random.random((100, 100, 1))
# Y2 = np.random.random((100, 1))
# model = GPT_2()
# model.compile('adam', loss='sparse_categorical_crossentropy')
# model.fit(X1, Y1)
# model.predict(X2)
# X1 = np.random.random((100, 100))
# X2 = np.random.random((100, 100, 1))
# Y1 = np.random.random((100, 100, 1))
# Y2 = np.random.random((100, 100))
# model = ELMo()
# model.compile(optimizer='adagrad', loss='sparse_categorical_crossentropy')
# model.fit([X1, Y1, X2])
# model.predict(X)
# i = 32
# X = [np.random.random((i, 100)), np.random.random((i, 100)), np.random.random((i, 1)), np.random.random((i, 100))]
# X = [np.random.random((i, 100)), np.random.random((i, 100)), np.random.random((i, 1))] #if training=False
# Y1 = np.random.random((i, 100, 1))
# model = XLNet(target_len=X[0].shape[1])
# model.summary()
# model.compile('adam', loss='sparse_categorical_crossentropy')
# model.fit(X, Y1)
# model.predict(X)
main()