We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
类似于这样的,更全一点的,python3.7 、CUDA9.2 收集相关的资料,放进《指南》里
The text was updated successfully, but these errors were encountered:
这个我有考虑过写进《指南》里,但是我发现一些老版本即使有版本号也无法安装,因为 cuDNN 无法满足要求,导致大家只能安装最近的几个版本。
如 tensorflow 1.11 要求安装 CUDA 9.0 和 cuDNN 7.2,但是实际上英伟达提供的唯一一个 cuDNN 7.2 的版本是 cuDNN v7.2.1 (August 7, 2018), for CUDA 9.2,那么我们就无法满足它的安装条件,只能手动编译,这并不是一个好方法,所以我在文中是这样写的:
最新版的 TensorFlow 使用的是 CUDA 10.0 和 cuDNN 7.4.1,NVIDIA 驱动需要 410.x 或更高版本。 建议按照官方文档中的 apt 方法安装 CUDA。
参考链接:
Sorry, something went wrong.
已更新,请查看最新的页面:https://dl.ypw.io/ubuntu-environment#tensorflow
No branches or pull requests
类似于这样的,更全一点的,python3.7 、CUDA9.2 收集相关的资料,放进《指南》里
The text was updated successfully, but these errors were encountered: