-
Notifications
You must be signed in to change notification settings - Fork 8
/
autoencoder.py
717 lines (586 loc) · 29.2 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
"""MNIST Autoencoder. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorflow as tf
import utils as ut
import input as inp
import visualization as vis
import matplotlib.pyplot as plt
import time
import sys
import getch
import model_interpreter as interpreter
import network_utils as nut
import math
from tensorflow.contrib.tensorboard.plugins import projector
from Bunch import Bunch
tf.app.flags.DEFINE_string('input_path', '../data/tmp/grid03.14.c.tar.gz', 'input folder')
tf.app.flags.DEFINE_string('input_name', '', 'input folder')
tf.app.flags.DEFINE_string('test_path', '', 'test set folder')
tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration')
tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)'
'WhatWhereAe (ww) U-netAe (u)')
tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set')
tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs')
tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs')
tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every')
tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization')
tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ')
tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information')
tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode')
tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ')
tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set')
tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info')
tf.app.flags.DEFINE_integer('blur_decrease', 10000, 'Decrease image blur every X steps')
FLAGS = tf.app.flags.FLAGS
slim = tf.contrib.slim
AUTOENCODER = 'ae'
PREDICTIVE = 'pred'
DENOISING = 'noise'
CHECKPOINT_NAME = '-9999.chpt'
EMB_SUFFIX = '_embedding'
def is_stopping_point(current_epoch, epochs_to_train, stop_every=None, stop_x_times=None,
stop_on_last=True):
if stop_on_last and current_epoch + 1 == epochs_to_train:
return True
if stop_x_times is not None:
return current_epoch % np.ceil(epochs_to_train / float(stop_x_times)) == 0
if stop_every is not None:
return (current_epoch + 1) % stop_every == 0
def _fetch_dataset(path, take=None):
dataset = inp.read_ds_zip(path) # read
take = len(dataset) if take is None else take
dataset = dataset[:take]
# print(dataset.dtype, dataset.shape, np.min(dataset), np.max(dataset))
# dataset = inp.rescale_ds(dataset, 0, 1)
if FLAGS.kill_depth:
dataset[..., -1] = 0
ut.print_info('DS fetch: %8d (%s)' % (len(dataset), path))
return dataset
def l2(x):
l = x.get_shape().as_list()[0]
return tf.reshape(tf.sqrt(tf.reduce_sum(x ** 2, axis=1)), (l, 1))
def get_stats_template():
return Bunch(
batch=[],
input=[],
encoding=[],
reconstruction=[],
total_loss=0.,
start=time.time())
def guard_nan(x):
return x if not math.isnan(x) else -1.
def _blur_expand(input):
k_size = 9
kernels = [2, 4, 6]
channels = [input] + [nut.blur_gaussian(input, k, k_size)[0] for k in kernels]
res = tf.concat(channels, axis=3)
return res
class Autoencoder:
train_set, test_set = None, None
permutation = None
batch_shape = None
epoch_size = None
input, target = None, None # AE placeholders
encode, decode = None, None # AE operations
model = None # interpreted model
encoding = None # AE predictive evaluation placeholder
eval_decode, eval_loss = None, None # AE evaluation
inputs, targets = None, None # Noise/Predictive placeholders
raw_inputs, raw_targets = None, None # inputs in network-friendly representation
models = None # Noise/Predictive interpreted models
optimizer, _train = None, None
loss_ae, loss_reco, loss_pred, loss_dn = None, None, None, None # Objectives
loss_total = None
losses = []
step = None # operation
step_var = None # variable
vis_summary, vis_placeholder = None, None
image_summaries = None
visualization_batch_perm = None
def __init__(self, optimizer=tf.train.AdamOptimizer, need_forlders=True):
self.optimizer_constructor = optimizer
FLAGS.input_name = inp.get_input_name(FLAGS.input_path)
if need_forlders:
ut.configure_folders(FLAGS)
ut.print_flags(FLAGS)
# MISC
def get_past_epochs(self):
return int(self.step.eval() / self.epoch_size)
@staticmethod
def get_checkpoint_path():
# print(os.path.join(FLAGS.save_path, CHECKPOINT_NAME), len(CHECKPOINT_NAME))
return os.path.join(FLAGS.save_path, CHECKPOINT_NAME)
def get_latest_checkpoint(self):
return tf.train.latest_checkpoint(
self.get_checkpoint_path()[:-len(EMB_SUFFIX)],
latest_filename='checkpoint'
)
# DATA
def fetch_datasets(self):
if FLAGS.max_epochs == 0:
FLAGS.input_path = FLAGS.test_path
self.train_set = _fetch_dataset(FLAGS.input_path)
self.epoch_size = int(self.train_set.shape[0] / FLAGS.batch_size)
self.batch_shape = [FLAGS.batch_size] + list(self.train_set.shape[1:])
reuse_train = FLAGS.test_path == FLAGS.input_path or FLAGS.test_path == ''
self.test_set = self.train_set.copy() if reuse_train else _fetch_dataset(FLAGS.test_path)
take_test = int(FLAGS.test_max) if FLAGS.test_max > 1 else int(FLAGS.test_max * len(self.test_set))
ut.print_info('take %d from test' % take_test)
self.test_set = self.test_set[:take_test]
def _batch_generator(self, x=None, y=None, shuffle=True, batches=None):
"""Returns BATCH_SIZE of couples of subsequent images"""
x = x if x is not None else self._get_blurred_dataset()
y = y if y is not None else x
batches = batches if batches is not None else int(np.floor(len(x) / FLAGS.batch_size))
self.permutation = np.arange(len(x))
self.permutation = self.permutation if not shuffle else np.random.permutation(self.permutation)
for i in range(batches):
batch_indexes = self.permutation[i * FLAGS.batch_size:(i + 1) * FLAGS.batch_size]
# batch = np.stack((dataset[batch_indexes], dataset[batch_indexes + 1], dataset[batch_indexes + 2]), axis=1)
yield x[batch_indexes], y[batch_indexes]
def _batch_permutation_generator(self, length, start=0, shuffle=True, batches=None):
self.permutation = np.arange(length) + start
self.permutation = self.permutation if not shuffle else np.random.permutation(self.permutation)
for i in range(int(length/FLAGS.batch_size)):
if batches is not None and i >= batches:
break
yield self.permutation[i * FLAGS.batch_size:(i + 1) * FLAGS.batch_size]
_blurred_dataset, _last_blur = None, 0
def _get_blur_sigma(self):
calculated_sigma = FLAGS.blur - int(10 * self.step.eval() / FLAGS.blur_decrease) / 10.0
return max(0, calculated_sigma)
# @ut.timeit
def _get_blurred_dataset(self):
if FLAGS.blur != 0:
current_sigma = self._get_blur_sigma()
if current_sigma != self._last_blur:
# print(self._last_blur, current_sigma)
self._last_blur = current_sigma
self._blurred_dataset = inp.apply_gaussian(self.train_set, sigma=current_sigma)
ut.print_info('blur s:%.1f[%.1f>%.1f]' % (current_sigma, self.train_set[2, 10, 10, 0], self._blurred_dataset[2, 10, 10, 0]))
return self._blurred_dataset if self._blurred_dataset is not None else self.train_set
return self.train_set
# TRAIN
def build_ae_model(self):
self.input = tf.placeholder(tf.uint8, self.batch_shape, name='input')
self.target = tf.placeholder(tf.uint8, self.batch_shape, name='target')
self.step = tf.Variable(0, trainable=False, name='global_step')
root = self._image_to_tensor(self.input)
target = self._image_to_tensor(self.target)
model = interpreter.build_autoencoder(root, FLAGS.net)
self.encode = model.encode
self.model = model
self.encoding = tf.placeholder(self.encode.dtype, self.encode.get_shape(), name='encoding')
eval_decode = interpreter.build_decoder(self.encoding, model.config, reuse=True)
print(target, eval_decode)
self.eval_loss = interpreter.l2_loss(target, eval_decode, name='predictive_reconstruction')
self.eval_decode = self._tensor_to_image(eval_decode)
self.loss_ae = interpreter.l2_loss(target, model.decode, name='reconstruction')
self.decode = self._tensor_to_image(model.decode)
self.losses = [self.loss_ae]
def build_predictive_model(self):
self.build_ae_model() # builds on top of AE model. Due to auxilary operations init
self.inputs = tf.placeholder(tf.uint8, [3] + self.batch_shape, name='inputs')
self.targets = tf.placeholder(tf.uint8, [3] + self.batch_shape, name='targets')
# transform inputs
self.raw_inputs = [self._image_to_tensor(self.inputs[i]) for i in range(3)]
self.raw_targets = [self._image_to_tensor(self.targets[i]) for i in range(3)]
# build AE objective for triplet
config = self.model.config
models = [interpreter.build_autoencoder(x, config) for x in self.raw_inputs]
reco_losses = [1./3 * interpreter.l2_loss(models[i].decode, self.raw_targets[i]) for i in range(3)] # business as usual
self.models = models
# build predictive objective
pred_loss_2 = self._prediction_decode(models[1].encode*2 - models[0].encode, self.raw_targets[2], models[2])
pred_loss_0 = self._prediction_decode(models[1].encode*2 - models[2].encode, self.raw_targets[0], models[0])
# build regularized distance objective
dist_loss1 = self._distance_loss(models[1].encode - models[0].encode)
dist_loss2 = self._distance_loss(models[1].encode - models[2].encode)
# Stitch it all together and train
self.loss_reco = tf.add_n(reco_losses)
self.loss_pred = pred_loss_0 + pred_loss_2
self.loss_dist = dist_loss1 + dist_loss2
self.losses = [self.loss_reco, self.loss_pred]
def _distance_loss(self, distances):
error = tf.nn.relu(l2(distances) - FLAGS.distance ** 2)
return tf.reduce_sum(error)
def _prediction_decode(self, prediction, target, model):
"""Predict encoding t3 by encoding (t2 and t1) and expect a good reconstruction"""
predict_decode = interpreter.build_decoder(prediction, self.model.config, reuse=True, masks=model.mask_list)
predict_loss = 1./2 * interpreter.l2_loss(predict_decode, target, alpha=FLAGS.alpha)
self.models += [predict_decode]
return predict_loss * FLAGS.gamma
def build_denoising_model(self):
self.build_predictive_model() # builds on top of predictive model. Reuses triplet encoding
# build denoising objective
models = self.models
self.loss_dn = self._noisy_decode(models[1])
self.losses = [self.loss_reco, self.loss_pred, self.loss_dist, self.loss_dn]
def _noisy_decode(self, model):
"""Distort middle encoding with [<= 1/3*dist(neigbour)] and demand good reconstruction"""
# dist = l2(x1 - x2)
# noise = dist * self.epsilon_sphere_noise()
# tf.stop_gradient(noise)
noise = tf.random_normal(self.model.encode.get_shape().as_list()) * FLAGS.epsilon
noisy_encoding = noise + self.models[1].encode
tf.stop_gradient(noisy_encoding) # or maybe here, who knows
noisy_decode = interpreter.build_decoder(noisy_encoding, model.config, reuse=True, masks=model.mask_list)
loss = interpreter.l2_loss(noisy_decode, self.raw_targets[1], alpha=FLAGS.beta)
self.models += [noisy_decode]
return loss
def _tensor_to_image(self, net):
with tf.name_scope('to_image'):
if FLAGS.new_blur:
net = net[..., :self.batch_shape[-1]]
net = tf.nn.relu(net)
net = tf.cast(net <= 1, net.dtype) * net * 255
net = tf.cast(net, tf.uint8)
return net
def _image_to_tensor(self, image):
with tf.name_scope('args_transform'):
net = tf.cast(image, tf.float32) / 255.
if FLAGS.new_blur:
net = _blur_expand(net)
FLAGS.blur = 0.
return net
def _init_optimizer(self):
self.loss_total = tf.add_n(self.losses, 'loss_total')
self.optimizer = self.optimizer_constructor(learning_rate=FLAGS.learning_rate)
self._train = self.optimizer.minimize(self.loss_total, global_step=self.step)
# MAIN
def train(self):
self.fetch_datasets()
if FLAGS.model == AUTOENCODER:
self.build_ae_model()
elif FLAGS.model == PREDICTIVE:
self.build_predictive_model()
else:
self.build_denoising_model()
self._init_optimizer()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self._on_training_start(sess)
try:
for current_epoch in range(FLAGS.max_epochs):
start = time.time()
full_set_blur = len(self.train_set) < 50000
ds = self._get_blurred_dataset() if full_set_blur else self.train_set
if FLAGS.model == AUTOENCODER:
# Autoencoder Training
for batch in self._batch_generator():
summs, encoding, reconstruction, loss, _, step = sess.run(
[self.summs_train, self.encode, self.decode, self.loss_ae, self.train_ae, self.step],
feed_dict={self.input: batch[0], self.target: batch[1]}
)
self._on_batch_finish(summs, loss, batch, encoding, reconstruction)
else:
# Predictive and Denoising training
for batch_indexes in self._batch_permutation_generator(len(ds)-2):
batch = np.stack((ds[batch_indexes], ds[batch_indexes + 1], ds[batch_indexes + 2]))
if not full_set_blur:
batch = np.stack((
inp.apply_gaussian(ds[batch_indexes], sigma=self._get_blur_sigma()),
inp.apply_gaussian(ds[batch_indexes+1], sigma=self._get_blur_sigma()),
inp.apply_gaussian(ds[batch_indexes+2], sigma=self._get_blur_sigma())
))
summs, loss, _ = sess.run(
[self.summs_train, self.loss_total, self._train],
feed_dict={self.inputs: batch, self.targets: batch})
self._on_batch_finish(summs, loss)
self._on_epoch_finish(current_epoch, start, sess)
self._on_training_finish(sess)
except KeyboardInterrupt:
self._on_training_abort(sess)
def inference(self, max=10^6):
self.fetch_datasets()
self.build_ae_model()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# nut.print_model_info()
# nut.list_checkpoint_vars(self.get_latest_checkpoint().replace(EMB_SUFFIX, ''))
self.saver = tf.train.Saver()
self._restore_model(sess)
# nut.print_model_info()
encoding, decoding = None, None
for i in range(len(self.train_set)):
batch = np.expand_dims(self.train_set[i], axis=0)
enc, dec = sess.run(
[self.encode, self.decode],
feed_dict={self.input: batch}
)
# print(enc.shape, dec.shape)
encoding = enc if i == 0 else np.vstack((encoding, enc))
decoding = dec if i == 0 else np.vstack((decoding, dec))
print('\r%5d/%d' % (i, len(self.train_set)), end='')
if i >= max:
break
return encoding, decoding
# @ut.timeit
def evaluate(self, sess, take):
digest = Bunch(encoded=None, reconstructed=None, source=None,
loss=.0, eval_loss=.0, dumb_loss=.0)
blurred = inp.apply_gaussian(self.test_set, self._get_blur_sigma())
# Encode
for i, batch in enumerate(self._batch_generator(blurred, shuffle=False)):
encoding = self.encode.eval(feed_dict={self.input: batch[0]})
digest.encoded = ut.concatenate(digest.encoded, encoding)
# Save encoding for visualization
encoded_no_nan = np.nan_to_num(digest.encoded)
self.embedding_assign.eval(feed_dict={self.embedding_test_ph: encoded_no_nan})
try:
self.embedding_saver.save(sess, self.get_checkpoint_path() + EMB_SUFFIX)
except:
ut.print_info("Unexpected error: %s" % str(sys.exc_info()[0]), color=33)
# Calculate expected evaluation
expected = digest.encoded[1:-1]*2 - digest.encoded[:-2]
average = 0.5 * (digest.encoded[1:-1] + digest.encoded[:-2])
digest.size = len(expected)
# evaluation summaries
self.summary_writer.add_summary(self.eval_summs.eval(
feed_dict={self.blur_ph: self._get_blur_sigma()}),
global_step=self.get_past_epochs())
# evaluation losses
for p in self._batch_permutation_generator(digest.size, shuffle=False):
digest.loss += self.eval_loss.eval(feed_dict={self.encoding: digest.encoded[p + 2], self.target: blurred[p + 2]})
digest.eval_loss += self.eval_loss.eval(feed_dict={self.encoding: expected[p], self.target: blurred[p + 2]})
digest.dumb_loss += self.loss_ae.eval( feed_dict={self.input: blurred[p], self.target: blurred[p + 2]})
# for batch in self._batch_generator(blurred, batches=1):
# digest.source = batch[1][:take]
# digest.reconstructed = self.decode.eval(feed_dict={self.input: batch[0]})[:take]
# Reconstruction visualizations
for p in self._batch_permutation_generator(digest.size, shuffle=True, batches=1):
self.visualization_batch_perm = self.visualization_batch_perm if self.visualization_batch_perm is not None else p
p = self.visualization_batch_perm
digest.source = self.eval_decode.eval(feed_dict={self.encoding: expected[p]})[:take]
digest.source = blurred[(p+2)[:take]]
digest.reconstructed = self.eval_decode.eval(feed_dict={self.encoding: average[p]})[:take]
self._eval_image_summaries(blurred[p], digest.encoded[p], average[p], expected[p])
digest.dumb_loss = guard_nan(digest.dumb_loss)
digest.eval_loss = guard_nan(digest.eval_loss)
digest.loss = guard_nan(digest.loss)
return digest
def _eval_image_summaries(self, blurred_batch, actual, average, expected):
"""Create Tensorboard summaries with image reconstructions"""
noisy = expected + np.random.randn(*expected.shape) * FLAGS.epsilon
summary = self.image_summaries['orig'].eval(feed_dict={self.input: blurred_batch})
self.summary_writer.add_summary(summary, global_step=self.get_past_epochs())
self._eval_image_summary('midd', average)
# self._eval_image_summary('reco', actual)
self._eval_image_summary('pred', expected)
self._eval_image_summary('nois', noisy)
def _eval_image_summary(self, name, encdoding_batch):
summary = self.image_summaries[name].eval(feed_dict={self.encoding: encdoding_batch})
self.summary_writer.add_summary(summary, global_step=self.get_past_epochs())
def _add_decoding_summary(self, name, var, collection='train'):
var = var[:FLAGS.visualiza_max]
var = tf.concat(tf.unstack(var), axis=0)
var = tf.expand_dims(var, dim=0)
color_s = tf.summary.image(name, var[..., :3], max_outputs=FLAGS.visualiza_max)
var = tf.expand_dims(var[..., 3], dim=3)
bw_s = tf.summary.image('depth_' + name, var, max_outputs=FLAGS.visualiza_max)
return tf.summary.merge([color_s, bw_s])
# TRAINING PROGRESS EVENTS
def _on_training_start(self, sess):
# Writers and savers
self.summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph)
self.saver = tf.train.Saver()
self._build_embedding_saver(sess)
self._restore_model(sess)
# Loss summaries
self._build_summaries()
self.epoch_stats = get_stats_template()
self.stats = Bunch(
epoch_accuracy=[],
epoch_reconstructions=[],
permutation=None
)
# if FLAGS.dev:
# plt.ion()
# plt.show()
def _build_summaries(self):
# losses
with tf.name_scope('losses'):
loss_names = ['loss_autoencoder', 'loss_predictive', 'loss_distance', 'loss_denoising']
for i, loss in enumerate(self.losses):
self._add_loss_summary(loss_names[i], loss)
self._add_loss_summary('loss_total', self.loss_total)
self.summs_train = tf.summary.merge_all('train')
# reconstructions
with tf.name_scope('decodings'):
self.image_summaries = {
'orig': self._add_decoding_summary('0_original_input', self.input),
'reco': self._add_decoding_summary('1_reconstruction', self.eval_decode),
'pred': self._add_decoding_summary('2_prediction', self.eval_decode),
'midd': self._add_decoding_summary('3_averaged', self.eval_decode),
'nois': self._add_decoding_summary('4_noisy', self.eval_decode)
}
# visualization
fig = vis.get_figure()
fig.canvas.draw()
self.vis_placeholder = tf.placeholder(tf.uint8, ut.fig2rgb_array(fig).shape)
self.vis_summary = tf.summary.image('visualization', self.vis_placeholder)
# embedding
dists = l2(self.embedding_test[:-1] - self.embedding_test[1:])
self.dist = dists
metrics = []
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error))
metrics.append(tf.summary.scalar('training/improvement', improvement))
metrics.append(tf.summary.scalar('training/improvement_abs', tf.nn.relu(improvement)))
metrics.append(tf.summary.histogram('training/improvement_abs_hist', nut.nan_to_zero(improvement)))
metrics.append(tf.summary.scalar('training/improvement_pairwise', tf.reduce_mean(pairwise_improvement_bool)))
metrics.append(tf.summary.histogram('training/improvement_pairwise_hist', pairwise_improvement_bool))
self.eval_summs = tf.summary.merge(metrics)
def _build_embedding_saver(self, sess):
"""To use embedding visualizer data has to be stored in variable
since we would like to visualize TEST_SET, this variable should not affect
common checkpoint of the model.
Hence, we build a separate variable with a separate saver."""
embedding_shape = [int(len(self.test_set) / FLAGS.batch_size) * FLAGS.batch_size,
self.encode.get_shape().as_list()[1]]
tsv_path = os.path.join(FLAGS.logdir, 'metadata.tsv')
self.embedding_test_ph = tf.placeholder(tf.float32, embedding_shape, name='embedding')
self.embedding_test = tf.Variable(tf.random_normal(embedding_shape), name='test_embedding', trainable=False)
self.embedding_assign = self.embedding_test.assign(self.embedding_test_ph)
self.embedding_saver = tf.train.Saver(var_list=[self.embedding_test])
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = self.embedding_test.name
embedding.sprite.image_path = './sprite.png'
embedding.sprite.single_image_dim.extend([80, 80])
embedding.metadata_path = './metadata.tsv'
projector.visualize_embeddings(self.summary_writer, config)
sess.run(tf.variables_initializer([self.embedding_test], name='init_embeddings'))
# build sprite image
ut.images_to_sprite(self.test_set, path=os.path.join(FLAGS.logdir, 'sprite.png'))
ut.generate_tsv(len(self.test_set), tsv_path)
def _add_loss_summary(self, name, var, collection='train'):
if var is not None:
tf.summary.scalar(name, var, [collection])
tf.summary.scalar('log_' + name, tf.log(var), [collection])
def _restore_model(self, session):
latest_checkpoint = self.get_latest_checkpoint()
print(latest_checkpoint)
if latest_checkpoint is not None:
latest_checkpoint = latest_checkpoint.replace(EMB_SUFFIX, '')
ut.print_info("latest checkpoint: %s" % latest_checkpoint)
if FLAGS.load_state and latest_checkpoint is not None:
self.saver.restore(session, latest_checkpoint)
ut.print_info('Restored requested. Previous epoch: %d' % self.get_past_epochs(), color=31)
def _on_batch_finish(self, summs, loss, batch=None, encoding=None, reconstruction=None):
self.summary_writer.add_summary(summs, global_step=self.step.eval())
self.epoch_stats.total_loss += loss
if False:
assert batch is not None and reconstruction is not None
original = batch[0]
vis.plot_reconstruction(original, reconstruction, interactive=True)
# @ut.timeit
def _on_epoch_finish(self, epoch, start_time, sess):
elapsed = time.time() - start_time
self.epoch_stats.total_loss = guard_nan(self.epoch_stats.total_loss)
accuracy = np.nan_to_num(100000 * np.sqrt(self.epoch_stats.total_loss / np.prod(self.batch_shape) / self.epoch_size))
# SAVE
if is_stopping_point(epoch, FLAGS.max_epochs, FLAGS.save_every):
self.saver.save(sess, self.get_checkpoint_path())
# VISUALIZE
if is_stopping_point(epoch, FLAGS.max_epochs, FLAGS.eval_every):
evaluation = self.evaluate(sess, take=FLAGS.visualiza_max)
data = {
'enc': np.asarray(evaluation.encoded),
'rec': np.asarray(evaluation.reconstructed),
'blu': np.asarray(evaluation.source)
}
error_info = '%d(%d.%d.%d)' % (np.nan_to_num(accuracy),
np.nan_to_num(evaluation.loss)/evaluation.size,
np.nan_to_num(evaluation.eval_loss)/evaluation.size,
np.nan_to_num(evaluation.dumb_loss)/evaluation.size)
meta = Bunch(suf='encodings', e='%06d' % int(self.get_past_epochs()), er=error_info)
# print(data, meta.to_file_name(folder=FLAGS.save_path))
np.save(meta.to_file_name(folder=FLAGS.save_path), data)
vis.plot_encoding_crosssection(
evaluation.encoded,
meta.to_file_name(FLAGS.save_path, 'jpg'),
evaluation.source,
evaluation.reconstructed,
interactive=FLAGS.dev)
self._save_visualization_to_summary()
self.stats.epoch_accuracy.append(accuracy)
self._print_epoch_info(accuracy, epoch, FLAGS.max_epochs, elapsed)
if epoch + 1 != FLAGS.max_epochs:
self.epoch_stats = get_stats_template()
def _save_visualization_to_summary(self):
image = ut.fig2rgb_array(plt.figure(num=0))
self.summary_writer.add_summary(self.vis_summary.eval(feed_dict={self.vis_placeholder: image}))
def _print_epoch_info(self, accuracy, current_epoch, epochs, elapsed):
epochs_past = self.get_past_epochs() - current_epoch
accuracy_info = '' if accuracy is None else '| accuracy %d' % int(accuracy)
epoch_past_info = '' if epochs_past is None else '+%d' % (epochs_past - 1)
epoch_count = 'Epochs %2d/%d%s' % (current_epoch + 1, epochs, epoch_past_info)
time_info = '%2dms/bt' % (elapsed / self.epoch_size * 1000)
examples = int(np.floor(len(self.train_set) / FLAGS.batch_size))
loss_info = 't.loss:%d' % (self.epoch_stats.total_loss * 100 / (examples * np.prod(self.batch_shape[1:])))
info_string = ' '.join([epoch_count, accuracy_info, time_info, loss_info])
ut.print_time(info_string, same_line=True)
def _on_training_finish(self, sess):
if FLAGS.max_epochs == 0:
self._on_epoch_finish(self.get_past_epochs(), time.time(), sess)
best_acc = np.min(self.stats.epoch_accuracy)
ut.print_time('Best Quality: %f for %s' % (best_acc, FLAGS.net))
self.summary_writer.close()
def _on_training_abort(self, sess):
print('Press ENTER to save the model')
if getch.getch() == '\n':
print('saving')
self.saver.save(sess, self.get_checkpoint_path())
if __name__ == '__main__':
args = dict([arg.split('=', maxsplit=1) for arg in sys.argv[1:]])
if len(args) <= 1:
FLAGS.input_path = '../data/tmp/romb8.5.6.tar.gz'
FLAGS.test_path = '../data/tmp/romb8.5.6.tar.gz'
FLAGS.test_max = 2178
FLAGS.max_epochs = 5
FLAGS.eval_every = 1
FLAGS.save_every = 1
FLAGS.batch_size = 32
FLAGS.blur = 0.0
# FLAGS.model = 'noise'
# FLAGS.beta = 1.0
# FLAGS.epsilon = .000001
model = Autoencoder()
if FLAGS.model == 'ae':
FLAGS.model = AUTOENCODER
elif 'pred' in FLAGS.model:
print('PREDICTIVE')
FLAGS.model = PREDICTIVE
elif 'noi' in FLAGS.model:
print('DENOISING')
FLAGS.model = DENOISING
else:
print('Do-di-li-doo doo-di-li-don')
model.train()