-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
executable file
·568 lines (437 loc) · 16.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import datetime
import time
from matplotlib import pyplot as plt
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import collections
import tensorflow as tf
from scipy import misc
import re
import sys
import subprocess as sp
import warnings
import functools
import scipy
import random
IMAGE_FOLDER = './img/'
TEMP_FOLDER = './tmp/'
EPOCH_THRESHOLD = 4
FLAGS = tf.app.flags.FLAGS
_start_time = None
# CONSOLE OPERATIONS
def reset_start_time():
global _start_time
_start_time = None
def _get_time_offset():
global _start_time
time = datetime.datetime.now()
if _start_time is None:
_start_time = time
return '\t\t'
sec = (time - _start_time).total_seconds()
res = '(+%d)\t' % sec if sec < 60 else '(+%d:%02d)\t' % (sec/60, sec%60)
return res
def print_time(*args, same_line=False):
string = ''
for a in args:
string += str(a) + ' '
time = datetime.datetime.now().time().strftime('%H:%M:%S')
offset = _get_time_offset()
res = '%s%s %s' % (str(time), offset, str(string))
print_color(res, same_line=same_line)
def print_info(string, color=32, same_line=False):
print_color('\t' + str(string), color=color, same_line=same_line)
same_line_prev = None
def print_color(string, color=33, same_line=False):
global same_line_prev
res = '%c[1;%dm%s%c[0m' % (27, color, str(string), 27)
if same_line:
print('\r ' +
' ', end=' ')
print('\r' + res, end=' ')
else:
# if same_line_prev:
# print('\n')
print(res)
same_line_prev = same_line
def mnist_select_n_classes(train_images, train_labels, num_classes, min=None, scale=1.0):
result_images, result_labels = [], []
for i, j in zip(train_images, train_labels):
if np.sum(j[0:num_classes]) > 0:
result_images.append(i)
result_labels.append(j[0:num_classes])
inputs = np.asarray(result_images)
inputs *= scale
if min is not None:
inputs = inputs - np.min(inputs) + min
return inputs, np.asarray(result_labels)
# IMAGE OPERATIONS
def _save_image(name='image', save_params=None, image=None):
if save_params is not None and 'e' in save_params and save_params['e'] < EPOCH_THRESHOLD:
print_info('IMAGE: output is not saved. epochs %d < %d' % (save_params['e'], EPOCH_THRESHOLD), color=31)
return
file_name = name if save_params is None else to_file_name(save_params)
file_name += '.png'
name = os.path.join(FLAGS.save_path, file_name)
if image is not None:
misc.imsave(name, arr=image, format='png')
def _show_picture(pic):
fig = plt.figure()
size = fig.get_size_inches()
fig.set_size_inches(size[0], size[1] * 2, forward=True)
plt.imshow(pic, cmap='Greys_r')
def concat_images(im1, im2, axis=0):
if im1 is None:
return im2
return np.concatenate((im1, im2), axis=axis)
def _reconstruct_picture_line(pictures, shape):
line_picture = None
for _, img in enumerate(pictures):
if len(img.shape) == 1:
img = (np.reshape(img, shape))
if len(img.shape) == 3 and img.shape[2] == 1:
img = (np.reshape(img, (img.shape[0], img.shape[1])))
line_picture = concat_images(line_picture, img)
return line_picture
def show_plt():
plt.show()
def _construct_img_shape(img):
assert int(np.sqrt(img.shape[0])) == np.sqrt(img.shape[0])
return int(np.sqrt(img.shape[0])), int(np.sqrt(img.shape[0])), 1
def images_to_uint8(func):
def normalize(arr):
# if type(arr) == np.ndarray and arr.dtype != np.uint8 and len(arr.shape) >= 3:
if type(arr) == np.ndarray and len(arr.shape) >= 3:
if np.min(arr) < 0:
print('image array normalization: negative values')
if np.max(arr) < 10:
arr *= 255
if arr.shape[-1] == 4 or arr.shape[-1] == 2:
old_shape = arr.shape
arr = arr[..., :arr.shape[-1]-1]
return arr.astype(np.uint8)
return arr
def func_wrapper(*args, **kwargs):
new_args = [normalize(el) for el in args]
new_kwargs = {k: normalize(kwargs[k]) for _, k in enumerate(kwargs)}
return func(*tuple(new_args), **new_kwargs)
return func_wrapper
def fig2buf(fig):
fig.canvas.draw()
return fig.canvas.tostring_rgb()
def fig2rgb_array(fig, expand=True):
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
ncols, nrows = fig.canvas.get_width_height()
shape = (nrows, ncols, 3) if not expand else (1, nrows, ncols, 3)
return np.fromstring(buf, dtype=np.uint8).reshape(shape)
@images_to_uint8
def reconstruct_images_epochs(epochs, original=None, save_params=None, img_shape=None):
full_picture = None
img_shape = img_shape if img_shape is not None else _construct_img_shape(epochs[0][0])
# print(original.dtype, epochs.dtype, np.max(original), np.max(epochs))
if original.dtype != np.uint8:
original = (original * 255).astype(np.uint8)
if epochs.dtype != np.uint8:
epochs = (epochs * 255).astype(np.uint8)
# print('image reconstruction: ', original.dtype, epochs.dtype, np.max(original), np.max(epochs))
if original is not None and epochs is not None and len(epochs) >= 3:
min_ref, max_ref = np.min(original), np.max(original)
print_info('epoch avg: (original: %s) -> %s' % (
str(np.mean(original)), str((np.mean(epochs[0]), np.mean(epochs[1]), np.mean(epochs[2])))))
print_info('reconstruction char. in epochs (min, max)|original: (%f %f)|(%f %f)' % (
np.min(epochs[1:]), np.max(epochs), min_ref, max_ref))
if epochs is not None:
for _, epoch in enumerate(epochs):
full_picture = concat_images(full_picture, _reconstruct_picture_line(epoch, img_shape), axis=1)
if original is not None:
full_picture = concat_images(full_picture, _reconstruct_picture_line(original, img_shape), axis=1)
_show_picture(full_picture)
_save_image(save_params=save_params, image=full_picture)
def model_to_file_name(FLAGS, folder=None, ext=None):
postfix = '' if len(FLAGS.postfix) == 0 else '_%s' % FLAGS.postfix
name = '%s.%s__i_%s%s' % (FLAGS.model, FLAGS.net.replace('-', '_'), FLAGS.input_name, postfix)
if ext:
name += '.' + ext
if folder:
name = os.path.join(folder, name)
return name
def mkdir(folders):
if isinstance(folders, str):
folders = [folders]
for _, folder in enumerate(folders):
if not os.path.exists(folder):
os.mkdir(folder)
def configure_folders(FLAGS):
folder_name = model_to_file_name(FLAGS) + '/'
FLAGS.save_path = os.path.join(TEMP_FOLDER, folder_name)
FLAGS.logdir = FLAGS.save_path
print_color(os.path.abspath(FLAGS.logdir))
mkdir([TEMP_FOLDER, IMAGE_FOLDER, FLAGS.save_path, FLAGS.logdir])
with open(os.path.join(FLAGS.save_path, '!note.txt'), "a") as f:
f.write('\n' + ' '.join(sys.argv) + '\n')
f.write(print_flags(FLAGS, print=False))
if len(FLAGS.comment) > 0:
f.write('\n\n%s\n' % FLAGS.comment)
def get_files(folder="./visualizations/", filter=None):
all = []
for root, dirs, files in os.walk(folder):
# print(root, dirs, files)
if filter:
files = [x for x in files if re.match(filter, x)]
all += files
return [os.path.join(folder, x) for x in all]
def get_latest_file(folder="./visualizations/", filter=None):
latest_file, latest_mod_time = None, None
for root, dirs, files in os.walk(folder):
# print(root, dirs, files)
if filter:
files = [x for x in files if re.match(filter, x)]
# print('\n\r'.join(files))
for file in files:
file_path = os.path.join(root, file)
modification_time = os.path.getmtime(file_path)
if not latest_mod_time or modification_time > latest_mod_time:
latest_mod_time = modification_time
latest_file = file_path
if latest_file is None:
print_info('Could not find file matching %s' % str(filter))
return latest_file
def concatenate(x, y, take=None):
"""
Stitches two np arrays together until maximum length, when specified
"""
if take is not None and x is not None and len(x) >= take:
return x
if x is None:
res = y
else:
res = np.concatenate((x, y))
return res[:take] if take is not None else res
# MISC
def list_object_attributes(obj):
print('Object type: %s\t\tattributes:' % str(type(obj)))
print('\n\t'.join(map(str, obj.__dict__.keys())))
def print_list(list):
print('\n'.join(map(str, list)))
def print_float_list(list, format='%.4f'):
return ' '.join(map(lambda x: format%x, list))
def timeit(method):
def timed(*args, **kw):
ts = time.time()
result = method(*args, **kw)
te = time.time()
print('%r %2.2f sec' % (method.__name__, te-ts))
return result
return timed
def deprecated(func):
'''This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.'''
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.warn_explicit(
"Call to deprecated function {}.".format(func.__name__),
category=DeprecationWarning,
filename=func.func_code.co_filename,
lineno=func.func_code.co_firstlineno + 1
)
return func(*args, **kwargs)
return new_func
import numpy as np
ACCEPTABLE_AVAILABLE_MEMORY = 1024
def mask_busy_gpus(leave_unmasked=1, random=True):
try:
command = "nvidia-smi --query-gpu=memory.free --format=csv"
memory_free_info = _output_to_list(sp.check_output(command.split()))[1:]
memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
available_gpus = [i for i, x in enumerate(memory_free_values) if x > ACCEPTABLE_AVAILABLE_MEMORY]
if len(available_gpus) < leave_unmasked:
print('Found only %d usable GPUs in the system' % len(available_gpus))
exit(0)
if random:
available_gpus = np.asarray(available_gpus)
np.random.shuffle(available_gpus)
# update CUDA variable
gpus = available_gpus[:leave_unmasked]
setting = ','.join(map(str, gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = setting
print('Left next %d GPU(s) unmasked: [%s] (from %s available)'
% (leave_unmasked, setting, str(available_gpus)))
except FileNotFoundError as e:
print('"nvidia-smi" is probably not installed. GPUs are not masked')
print(e)
except sp.CalledProcessError as e:
print("Error on GPU masking:\n", e.output)
def _output_to_list(output):
return output.decode('ascii').split('\n')[:-1]
def get_gpu_free_session(memory_fraction=0.1):
import tensorflow as tf
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=memory_fraction)
return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
def parse_params():
params = {}
for i, param in enumerate(sys.argv):
if '-' in param:
params[param[1:]] = sys.argv[i+1]
print(params)
return params
def print_flags(FLAGS, print=True):
x = FLAGS.input_path
res = 'FLAGS:'
for i in sorted(FLAGS.__dict__['__flags'].items()):
item = str(i)[2:-1].split('\', ')
res += '\n%20s \t%s' % (item[0] + ':', item[1])
if print:
print_info(res)
return res
def _abbreviate_string(value):
str_value = str(value)
abbr = [letter for letter in str_value if letter.isupper()]
if len(abbr) > 1:
return ''.join(abbr)
if len(str_value.split('_')) > 2:
parts = str_value.split('_')
letters = ''.join(x[0] for x in parts)
return letters
return value
def to_file_name(obj, folder=None, ext=None, append_timestamp=False):
name, postfix = '', ''
od = collections.OrderedDict(sorted(obj.items()))
for _, key in enumerate(od):
value = obj[key]
if value is None:
value = 'na'
#FUNC and OBJECTS
if 'function' in str(value):
value = str(value).split()[1].split('.')[0]
parts = value.split('_')
if len(parts) > 1:
value = ''.join(list(map(lambda x: x.upper()[0], parts)))
elif ' at ' in str(value):
value = (str(value).split()[0]).split('.')[-1]
value = _abbreviate_string(value)
elif isinstance(value, type):
value = _abbreviate_string(value.__name__)
# FLOATS
if isinstance(value, float) or isinstance(value, np.float32):
if value < 0.0001:
value = '%.6f' % value
elif value > 1000000:
value = '%.0f' % value
else:
value = '%.4f' % value
value = value.rstrip('0')
#INTS
if isinstance(value, int):
value = '%02d' % value
#LIST
if isinstance(value, list):
value = '|'.join(map(str, value))
truncate_threshold = 20
value = _abbreviate_string(value)
if len(value) > truncate_threshold:
print_info('truncating this: %s %s' % (key, value))
value = value[0:20]
if 'suf' in key or 'postf' in key:
continue
name += '__%s|%s' % (key, str(value))
if 'suf' in obj:
prefix_value = obj['suf']
else:
prefix_value = FLAGS.suffix
if 'postf' in obj:
prefix_value += '_%s' % obj['postf']
name = prefix_value + name
if ext:
name += '.' + ext
if folder:
name = os.path.join(folder, name)
return name
def dict_to_ordereddict(dict):
return collections.OrderedDict(sorted(dict.items()))
def configure_folders_2(FLAGS, meta):
folder_meta = meta.copy()
folder_meta.pop('init')
folder_meta.pop('lr')
folder_meta.pop('opt')
folder_meta.pop('bs')
folder_name = to_file_name(folder_meta) + '/'
checkpoint_folder = os.path.join(TEMP_FOLDER, folder_name)
log_folder = os.path.join(checkpoint_folder, 'log')
mkdir([TEMP_FOLDER, IMAGE_FOLDER, checkpoint_folder, log_folder])
FLAGS.save_path = checkpoint_folder
FLAGS.logdir = log_folder
return checkpoint_folder, log_folder
# precision/recall evaluation
def evaluate_precision_recall(y, target, labels):
import sklearn.metrics as metrics
target = target[:len(y)]
num_classes = max(target) + 1
results = []
for i in range(num_classes):
class_target = _extract_single_class(i, target)
class_y = _extract_single_class(i, y)
results.append({
'precision': metrics.precision_score(class_target, class_y),
'recall': metrics.recall_score(class_target, class_y),
'f1': metrics.f1_score(class_target, class_y),
'fraction': sum(class_target)/len(target),
'#of_class': int(sum(class_target)),
'label': labels[i],
'label_id': i
# 'tp': tp
})
print('%d/%d' % (i, num_classes), results[-1])
accuracy = metrics.accuracy_score(target, y)
return accuracy, results
def _extract_single_class(i, classes):
res, i = classes + 1, i + 1
res[res != i] = 0
res = np.asarray(res)
res = res / i
return res
def print_relevance_info(relevance, prefix='', labels=None):
labels = labels if labels is not None else np.arange(len(relevance))
separator = '\n\t' if len(relevance) > 3 else ' '
result = '%s format: [" label": f1_score (precision recall) label_percentage]' % prefix
format = '\x1B[0m%s\t"%25s":\x1B[31;40m%.2f\x1B[0m (%.2f %.2f) %d%%'
for i, label_relevance in enumerate(relevance):
result += format % (separator,
str(labels[i]),
label_relevance['f1'],
label_relevance['precision'],
label_relevance['recall'],
int(label_relevance['fraction']*10000)/100.
)
print(result)
def disalbe_tensorflow_warnings():
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
@timeit
def images_to_sprite(arr, path=None):
assert len(arr) <= 100*100
arr = arr[...,:3]
resized = [scipy.misc.imresize(x[..., :3], size=[80, 80]) for x in arr]
base = np.zeros([8000, 8000, 3], np.uint8)
for i in range(100):
for j in range(100):
index = j+100*i
if index < len(resized):
base[80*i:80*i+80, 80*j:80*j+80] = resized[index]
scipy.misc.imsave(path, base)
def generate_tsv(num, path):
with open(path, mode='w') as f:
[f.write('%d\n' % i) for i in range(num)]
def paste_patch(patch, base_size=40, upper_half=True):
channels = patch.shape[-1]
base = np.zeros((base_size, base_size, channels), dtype=np.uint8)
position_x = random.randint(0, base_size - patch.shape[0])
position_y = random.randint(0, base_size / 2 - patch.shape[1])
if not upper_half: position_y += int(base_size / 2)
base[position_x:position_x + patch.shape[0], position_y:position_y + patch.shape[1], :] = patch
return base
if __name__ == '__main__':
data = []
for i in range(10):
data.append((str(i), np.random.rand(1000)))
mask_busy_gpus()