forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MagicSquare.java
128 lines (108 loc) · 3.52 KB
/
MagicSquare.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// Copyright 2011 Hakan Kjellerstrand [email protected]
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.contrib;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;
import java.io.*;
import java.text.*;
import java.util.*;
public class MagicSquare {
static {
System.loadLibrary("jniortools");
}
/** Solves the Magic Square problem. See http://www.hakank.org/google_or_tools/magic_square.py */
private static void solve(int n, int num) {
Solver solver = new Solver("MagicSquare");
System.out.println("n: " + n);
//
// variables
//
IntVar[][] x = new IntVar[n][n];
// for the branching
IntVar[] x_flat = new IntVar[n * n];
//
// constraints
//
final long s = (n * (n * n + 1)) / 2;
System.out.println("s: " + s);
// IntVar s = solver.makeIntVar(0, n*n*n, "s");
IntVar[] diag1 = new IntVar[n];
IntVar[] diag2 = new IntVar[n];
for (int i = 0; i < n; i++) {
IntVar[] row = new IntVar[n];
for (int j = 0; j < n; j++) {
x[i][j] = solver.makeIntVar(1, n * n, "x[" + i + "," + j + "]");
x_flat[i * n + j] = x[i][j];
row[j] = x[i][j];
}
// sum row to s
solver.addConstraint(solver.makeSumEquality(row, s));
diag1[i] = x[i][i];
diag2[i] = x[i][n - i - 1];
}
// sum diagonals to s
solver.addConstraint(solver.makeSumEquality(diag1, s));
solver.addConstraint(solver.makeSumEquality(diag2, s));
// sum columns to s
for (int j = 0; j < n; j++) {
IntVar[] col = new IntVar[n];
for (int i = 0; i < n; i++) {
col[i] = x[i][j];
}
solver.addConstraint(solver.makeSumEquality(col, s));
}
// all are different
solver.addConstraint(solver.makeAllDifferent(x_flat));
// symmetry breaking: upper left is 1
// solver.addConstraint(solver.makeEquality(x[0][0], 1));
//
// Solve
//
DecisionBuilder db =
solver.makePhase(x_flat, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_CENTER_VALUE);
solver.newSearch(db);
int c = 0;
while (solver.nextSolution()) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.print(x[i][j].value() + " ");
}
System.out.println();
}
System.out.println();
c++;
if (num > 0 && c >= num) {
break;
}
}
solver.endSearch();
// Statistics
System.out.println();
System.out.println("Solutions: " + solver.solutions());
System.out.println("Failures: " + solver.failures());
System.out.println("Branches: " + solver.branches());
System.out.println("Wall time: " + solver.wallTime() + "ms");
}
public static void main(String[] args) throws Exception {
int n = 4;
int num = 0;
if (args.length > 0) {
n = Integer.parseInt(args[0]);
}
if (args.length > 1) {
num = Integer.parseInt(args[1]);
}
MagicSquare.solve(n, num);
}
}