-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_z3.py
226 lines (206 loc) · 7.35 KB
/
sudoku_z3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from z3 import *
from collections import defaultdict
class Sudoku():
def __init__(self):
# 9x9 matrix of integer variables
self.X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]
for i in range(9)]
# each cell contains a value in {1, ..., 9}
cells_c = [And(1 <= self.X[i][j], self.X[i][j] <= 9)
for i in range(9) for j in range(9)]
# each row contains a digit at most once
rows_c = [Distinct(self.X[i]) for i in range(9)]
# each column contains a digit at most once
cols_c = [Distinct([ self.X[i][j] for i in range(9)])
for j in range(9)]
# each 3x3 square contains a digit at most once
sq_c = [Distinct([self.X[3*i0 + i][3*j0 + j]
for i in range(3) for j in range(3)])
for i0 in range(3) for j0 in range(3)]
self.constraints = cells_c + rows_c + cols_c + sq_c
self.instance_constraints = []
def get_groups(self, instance):
cell_groups = defaultdict(list)
for i, row in enumerate(instance):
for j, c in enumerate(row):
cell_groups[c].append(self.X[i][j])
return cell_groups
def add_filled_numbers(self, instance):
instance_c = [self.X[i][j] == int(instance[i][j])
for i in range(9) for j in range(9)
if instance[i][j] != '0']
self.instance_constraints += instance_c
def add_killer_sudoku(self, instance, sums=None, equals=None, gts=None,
nes=None, distinct=True):
sums = sums or {}
nes = nes or {}
equals = equals or []
gts = gts or []
groups = self.get_groups(instance)
symbols = set(tuple(sums.keys()) + sum(equals + gts, tuple()))
distinct_c = [Distinct(groups[s]) for s in symbols] if distinct else []
sums_c = [sum(groups[c]) == val for c, val in sums.items()]
nes_c = [sum(groups[c]) != val for c, val in nes.items()]
equals_c = [sum(groups[a]) == sum(groups[b]) for a,b in equals]
gt_c = [sum(groups[a]) > sum(groups[b]) for a,b in gts]
self.instance_constraints += sums_c + distinct_c + equals_c + gt_c + nes_c
def add_miracle_rules(self):
ortho_move = [(-1, 0), (1, 0), (0,-1), (0, 1)]
king_move = ortho_move + [(-1,-1), (-1,1), (1,-1), (1, 1)]
knight_move = [(-2,-1), (-2, 1), ( 2,-1), ( 2, 1),
( 1,-2), ( 1, 2), (-1, 2), (-1,-2)]
valid_cells = set([(i,j) for i in range(9) for j in range(9)])
add = lambda a,b: (a[0]+b[0], a[1]+b[1])
get = lambda c: self.X[c[0]][c[1]]
gen_pairs = lambda deltas: ((get(c), get(add(c, delta)))
for c in list(valid_cells)
for delta in deltas
if add(c, delta) in valid_cells)
move_c = [c1 != c2 for c1, c2 in gen_pairs(king_move + knight_move)]
ortho_c = [And(c1 - c2 != 1, c2 - c1 != 1) for c1, c2 in gen_pairs(ortho_move)]
self.instance_constraints += move_c + ortho_c
def solve(self,
additional_constraints=None,
verbose=True,
debug=False,
check_uniqueness=False):
# Quantifier-free finite domain theory
s = SolverFor("QF_FD")
additional_constraints = additional_constraints or []
s.add(self.constraints + self.instance_constraints + additional_constraints)
if debug:
print('Sudoku Constraints', self.constraints)
print('Instance Constraints', self.instance_constraints)
if s.check() == sat:
m = s.model()
r = '\n'.join(''.join(str(m.evaluate(self.X[i][j])) for j in range(9))
for i in range(9))
if verbose:
print('Solution:')
print(r)
if check_uniqueness:
s.add(Or(*[Xi != m.evaluate(Xi) for row in self.X for Xi in row]))
unique = not (s.check() == sat)
if verbose: print(f'Solution {"" if unique else "Not "}Unique!')
return unique
else:
if verbose: print("failed to solve")
def solve_sudoku():
# Normal sudoku instance, we use '0' for empty cells
instance = \
('530070000',
'600195000',
'098000060',
'800060003',
'400803001',
'700020006',
'060000280',
'000419005',
'000080079')
s = Sudoku()
s.add_filled_numbers(instance)
s.solve()
def solve_killer_sudoku():
# Killer sudoku instance with additional sum constraints
instance = \
('aabcceegg',
'llbddfjhi',
'lmnoffjhi',
'mmnooAjkk',
'ttpozABBC',
'rqpzzyBCC',
'rqsszyDEE',
'uvvwwyDFF',
'uuuwxxDGG')
sums = {'b':6, 'e':16, 'f':17, 'h':12, 'i':9, 'j':9, 'l':14, 'm':20, 'n':13,
'o':29, 'p':8, 'q':14, 'r':8, 's':17, 'u':11, 'w':11, 'z':12, 'A':4, 'F':8}
equals = [('c', 'd')]
gts = [('h','g'), ('g','i'), ('q','v'), ('v','u'), ('x','w'), ('y','x')]
s = Sudoku()
s.add_killer_sudoku(instance, sums, equals, gts)
s.solve()
def solve_hard_killer_sudoku():
instance = \
('aaabbbccc',
'adddeffgc',
'ammleifgh',
'amllkiiih',
'onllkjjih',
'onnnkjjwt',
'oprnujwwt',
'qprruvvvt',
'qqqsssttt')
sums = \
{'a':28,'b':12,'c':22,'d':16,'e':10,'f':10,'g':13,'h':14,'i':23,'j':31,
'k':13,'l':33,'m':12,'n':31,'o':10,'p':12,'q':20,'r':11,'s':17,'t':23,
'u':10,'v':15,'w':19}
s = Sudoku()
s.add_killer_sudoku(instance, sums)
s.solve()
def solve_arrow_sudoku():
instance = \
('000000050',
'000506090',
'960000000',
'000000000',
'500070009',
'000000000',
'000000048',
'090605000',
'070000000')
arrow_instance = \
(' aa bbB ',
' A F d',
' f edc',
' fGeDCc',
' hgg E ',
'Hh J mM',
'I j m ',
'i j ll ',
'i Kkk L')
s = Sudoku()
s.add_filled_numbers(instance)
s.add_killer_sudoku(arrow_instance,
equals=list(zip('abcdefghijklm', 'ABCDEFGHIJKLM')),
distinct=False)
s.solve()
def solve_miracle_sudoku():
instance = \
('000000000',
'000000000',
'000000000',
'000000000',
'001000000',
'000000200',
'000000000',
'000000000',
'000000000')
instance = \
('000000000',
'000000000',
'000020000',
'001000000',
'000000000',
'000000000',
'000000000',
'000000000',
'000000000')
s = Sudoku()
s.add_filled_numbers(instance)
s.add_miracle_rules()
s.solve(check_uniqueness=True)
def generate_miracle_sudoku():
s = Sudoku()
s.add_miracle_rules()
return [(i, j) for i in range(9) for j in range(9)
if not (i == j == 0) and
s.solve(additional_constraints=[s.X[0][0] == 1, s.X[i][j] == 2],
check_uniqueness=True,
verbose=False)]
if __name__=='__main__':
#solve_sudoku()
#solve_killer_sudoku()
#solve_hard_killer_sudoku()
#solve_arrow_sudoku()
solve_miracle_sudoku()
#generate_miracle_sudoku()