-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrainer.py
418 lines (366 loc) · 19.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import logging
from tqdm import tqdm, trange
from collections import Counter
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, ConcatDataset, TensorDataset
from transformers import BertConfig, AdamW, get_linear_schedule_with_warmup
import copy
import math
from model import RBERT
from utils import set_seed, write_f1_tc, write_prediction_re, write_prediction_tc, write_prediction_wic, compute_metrics, get_label, MODEL_CLASSES, WiCMODEL_CLASSES, ReMODEL_CLASSES, ContrastiveLoss, SoftContrastiveLoss
logger = logging.getLogger(__name__)
class Trainer(object):
def __init__(self, args, train_dataset = None, dev_dataset = None, test_dataset = None, labelset = None, unlabeled = None, \
num_labels = 10, id2label = None, label2id = None, data_size = 100):
#masked_train_dataset = None, masked_dev_dataset = None, masked_test_dataset = None, masked_unlabeled_dataset = None):
self.args = args
self.train_dataset = train_dataset
self.dev_dataset = dev_dataset
self.test_dataset = test_dataset
self.unlabeled = unlabeled
self.data_size = data_size
self.label_lst = labelset
self.num_labels = num_labels
self.id2label = id2label
self.label2id = label2id
self.w = args.soft_label_weight
self.k = (1-self.w)/(self.num_labels-1)
self.label_matrix = torch.eye(self.num_labels) * (self.w - self.k) + self.k * torch.ones(self.num_labels)
if args.task_type == 'wic':
self.config_class, self.model_class, _ = WiCMODEL_CLASSES[args.model_type]
elif args.task_type == 're':
self.config_class, self.model_class, _ = ReMODEL_CLASSES[args.model_type]
else:
self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type]
self.bert_config = self.config_class.from_pretrained(args.model_name_or_path, num_labels=self.num_labels, finetuning_task=args.task)
self.model = self.model_class(self.bert_config, args)
self.init_model()
#self.model.to(self.device)
def init_model(self):
# GPU or CPU
self.device = "cuda" if torch.cuda.is_available() and not self.args.no_cuda else "cpu"
self.model = nn.DataParallel(self.model)
self.model = self.model.to(self.device)
def calc_loss(self, input, target, loss, thresh = 0.95, soft = True, conf = 'max', confreg = 0.1):
softmax = nn.Softmax(dim=1)
target = softmax(target.view(-1, target.shape[-1])).view(target.shape)
if conf == 'max':
weight = torch.max(target, axis = 1).values
w = torch.FloatTensor([1 if x == True else 0 for x in weight>thresh]).to(self.device)
elif conf == 'entropy':
weight = torch.sum(-torch.log(target+1e-6) * target, dim = 1)
weight = 1 - weight / np.log(weight.size(-1))
w = torch.FloatTensor([1 if x == True else 0 for x in weight>thresh]).to(self.device)
target = self.soft_frequency(target, probs = True, soft = soft)
loss_batch = loss(input, target)
l = torch.sum(loss_batch * w.unsqueeze(1) * weight.unsqueeze(1))
n_classes_ = input.shape[-1]
l -= confreg *( torch.sum(input * w.unsqueeze(1)) + np.log(n_classes_) * n_classes_ )
return l
def contrastive_loss(self, input, feat, target, conf = 'none', thresh = 0.1, distmetric = 'l2'):
softmax = nn.Softmax(dim=1)
target = softmax(target.view(-1, target.shape[-1])).view(target.shape)
if conf == 'max':
weight = torch.max(target, axis = 1).values
w = torch.tensor([i for i,x in enumerate(weight) if x > thresh], dtype=torch.long).to(self.device)
elif conf == 'entropy':
weight = torch.sum(-torch.log(target+1e-6) * target, dim = 1)
weight = 1 - weight / np.log(weight.size(-1))
w = torch.tensor([i for i,x in enumerate(weight) if x > thresh], dtype=torch.long).to(self.device)
input_x = input[w]
feat_x = feat[w]
batch_size = input_x.size()[0]
if batch_size == 0:
return 0
index = torch.randperm(batch_size).to(self.device)
input_y = input_x[index, :]
feat_y = feat_x[index, :]
argmax_x = torch.argmax(input_x, dim = 1)
argmax_y = torch.argmax(input_y, dim = 1)
agreement = torch.FloatTensor([1 if x == True else 0 for x in argmax_x == argmax_y]).to(self.device)
criterion = ContrastiveLoss(margin = 1.0, metric = distmetric)
loss, dist_sq, dist = criterion(feat_x, feat_y, agreement)
return loss
def soft_frequency(self, logits, probs=False, soft = True):
"""
Unsupervised Deep Embedding for Clustering Analysis
https://arxiv.org/abs/1511.06335
"""
power = self.args.self_training_power
if not probs:
softmax = nn.Softmax(dim=1)
y = softmax(logits.view(-1, logits.shape[-1])).view(logits.shape)
else:
y = logits
f = torch.sum(y, dim=0)
t = y**power / f
#print('t', t)
t = t + 1e-10
p = t/torch.sum(t, dim=-1, keepdim=True)
return p if soft else torch.argmax(p, dim=1)
def selftrain(self, soft = True):
selftrain_dataset = ConcatDataset([self.train_dataset, self.unlabeled])
## generating pseudo_labels
pseudo_labels = []
train_sampler = RandomSampler(selftrain_dataset)
train_dataloader = DataLoader(selftrain_dataset, sampler=train_sampler, batch_size=self.args.batch_size)
if self.args.self_training_max_step > 0:
t_total = self.args.self_training_max_step
self.args.num_train_epochs = self.args.self_training_max_step // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay},
{'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total)
self_training_loss = nn.KLDivLoss(reduction = 'none') if soft else nn.CrossEntropyLoss(reduction = 'none')
softmax = nn.Softmax(dim=1)
update_step = 0
self_training_steps = self.args.self_training_max_step
global_step = 0
selftrain_loss = 0
set_seed(self.args)
#self.model.zero_grad()
for t3 in range(int(self_training_steps/len(train_dataloader)) + 1):
epoch_iterator = tqdm(train_dataloader, desc="SelfTrain, Iteration")
for step, batch in enumerate(epoch_iterator):
if global_step % self.args.self_training_update_period == 0:
teacher_model = copy.deepcopy(self.model) #.to("cuda")
teacher_model.eval()
for p in teacher_model.parameters():
p.requires_grad = False
self.model.train()
batch = tuple(t.to(self.device) for t in batch) # GPU or CPU
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
}
#self.model.eval()
if self.args.task_type=='wic':
inputs['keys'] = batch[6]
elif self.args.task_type=='re':
inputs['e1_mask'] = batch[4]
inputs['e2_mask'] = batch[5]
outputs = self.model(**inputs)
outputs_pseudo = teacher_model(**inputs)
logits = outputs[0]
true_labels = batch[-1]
loss = self.calc_loss(input = torch.log(softmax(logits)), \
target= outputs_pseudo[0], \
loss = self_training_loss, \
thresh = self.args.self_training_eps, \
soft = soft, \
conf = 'entropy', \
confreg = self.args.self_training_confreg)
if self.args.self_training_contrastive_weight > 0:
contrastive_loss = self.contrastive_loss(input = torch.log(softmax(logits)), \
feat = outputs_pseudo[-1], \
target= outputs_pseudo[0], \
conf = 'entropy', \
thresh = self.args.self_training_eps, \
distmetric = self.args.distmetric, \
)
loss = loss + self.args.self_training_contrastive_weight * contrastive_loss
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if torch.cuda.device_count() > 1:
loss = loss.mean()
selftrain_loss += loss.item()
loss.backward()
if (step + 1) % self.args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
self.model.zero_grad()
teacher_model.zero_grad()
global_step += 1
epoch_iterator.set_description("SelfTrain iter:%d Loss:%.3f" % (step, selftrain_loss/global_step, ))
if self.args.logging_steps > 0 and global_step % self.args.self_train_logging_steps == 0:
self.evaluate('dev', global_step)
self.evaluate('test', global_step)
if self.args.save_steps > 0 and global_step % self.args.save_steps == 0:
self.save_model()
if 0 < self.args.self_training_max_step < global_step:
epoch_iterator.close()
break
if 0 < self.args.self_training_max_step < global_step:
break
pass
def train(self):
if self.args.method == 'clean':
print('clean data!')
concatdataset = ConcatDataset([self.train_dataset, self.unlabeled])
train_sampler = RandomSampler(concatdataset)
train_dataloader = DataLoader(concatdataset, sampler=train_sampler, batch_size = self.args.batch_size)
else:
train_sampler = RandomSampler(self.train_dataset)
train_dataloader = DataLoader(self.train_dataset, sampler=train_sampler, batch_size=self.args.batch_size)
#assert 0
if self.args.max_steps > 0:
t_total = self.args.max_steps
self.args.num_train_epochs = self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay},
{'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(self.train_dataset))
logger.info(" Num Epochs = %d", self.args.num_train_epochs)
logger.info(" Total train batch size = %d", self.args.batch_size)
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
self.model.zero_grad()
train_iterator = trange(int(self.args.num_train_epochs), desc="Epoch")
set_seed(self.args)
criterion = nn.KLDivLoss(reduction = 'batchmean')
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
self.model.train()
batch = tuple(t.to(self.device) for t in batch) # GPU or CPU
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
}
if self.args.task_type=='wic':
inputs['keys'] = batch[6]
elif self.args.task_type=='re':
inputs['e1_mask'] = batch[4]
inputs['e2_mask'] = batch[5]
outputs = self.model(**inputs)
loss1 = outputs[0]
logits = outputs[1]
loss = criterion(input = F.log_softmax(logits), target = self.label_matrix[batch[3]].to(self.device))
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if torch.cuda.device_count() > 1:
#print(loss.size(), torch.cuda.device_count())
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
if (step + 1) % self.args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
self.model.zero_grad()
global_step += 1
epoch_iterator.set_description("iteration:%d, w=%.1f, Loss:%.3f" % (_, self.args.soft_label_weight, tr_loss/global_step))
if self.args.logging_steps > 0 and global_step % self.args.logging_steps == 0:
self.evaluate('dev', global_step)
self.evaluate('test', global_step)
if self.args.save_steps > 0 and global_step % self.args.save_steps == 0:
self.save_model()
if 0 < self.args.max_steps < global_step:
epoch_iterator.close()
break
if 0 < self.args.max_steps < global_step:
train_iterator.close()
break
#assert 0
return global_step, tr_loss / global_step
def evaluate(self, mode, global_step=-1):
# We use test dataset because semeval doesn't have dev dataset
if mode == 'test':
dataset = self.test_dataset
elif mode == 'dev':
dataset = self.dev_dataset
else:
raise Exception("Only dev and test dataset available")
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=self.args.batch_size)
# Eval!
logger.info("***** Running evaluation on %s dataset *****", mode)
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", self.args.batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
self.model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(self.device) for t in batch)
with torch.no_grad():
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
}
if self.args.task_type=='wic':
inputs['keys'] = batch[6]
elif self.args.task_type=='re':
inputs['e1_mask'] = batch[4]
inputs['e2_mask'] = batch[5]
outputs = self.model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
results = {
"loss": eval_loss
}
preds = np.argmax(preds, axis=1)
if self.args.task_type == 're':
write_prediction_re(self.args, os.path.join(self.args.eval_dir, "pred/proposed_answers.txt"), preds)
elif self.args.task_type == 'tc':
write_prediction_tc(self.args, os.path.join(self.args.eval_dir, "pred/pred_%s_%s_%s_%d.txt"%(self.args.task, mode, self.args.method, global_step)), preds, self.id2label)
elif self.args.task_type == 'wic':
write_prediction_wic(self.args, os.path.join(self.args.eval_dir, "pred/pred_%s_%s_%s_%s.txt"%(self.args.task, mode, self.args.method, str(global_step))), preds, self.id2label)
else:
pass
result = compute_metrics(preds, out_label_ids)
result.update(result)
logger.info("***** Eval results *****")
print('Macro F1: %.4f, Micro F1: %.4f, Accu: %.4f'%(result["macro-f1"], result["micro-f1"], result["acc"]))
write_f1_tc(self.args, os.path.join(self.args.eval_dir, "pred_%s_%s"%(self.args.task, mode)), result["macro-f1"], result["micro-f1"], result["acc"],global_step)
return results
def save_model(self):
# Save model checkpoint (Overwrite)
output_dir = os.path.join(self.args.model_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = self.model.module if hasattr(self.model, 'module') else self.model
model_to_save.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, 'training_config.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
def load_model(self):
# Check whether model exists
if not os.path.exists(self.args.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
self.bert_config = self.config_class.from_pretrained(self.args.model_dir)
logger.info("***** Config loaded *****")
self.model = self.model_class.from_pretrained(self.args.model_dir, config=self.bert_config, args=self.args)
self.model.to(self.device)
logger.info("***** Model Loaded *****")
except:
raise Exception("Some model files might be missing...")