-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_befre_on_pure.py
1044 lines (926 loc) · 53.6 KB
/
run_befre_on_pure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This code is based on the file in PURE repo: https://github.com/princeton-nlp/PURE/blob/main/run_relation.py
"""
import argparse
import logging
import os
import random
import time
import json
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
# from collections import Counter
#
# from torch.nn import CrossEntropyLoss
from transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
# from relation.models import BertForRelation, AlbertForRelation
from transformers import AutoTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from relation.utils import generate_relation_data, decode_sample_id
from shared.const import task_rel_labels, task_ner_labels
# from relation.config import BEFREConfig
from relation.befre import BEFRE, BEFREConfig
from relation.unified_model import BEFRE, BEFREConfig
id2description = {0: ["there are no relations between the compound @subject@ and gene @object@ .",
"the compound @subject@ and gene @object@ has no relations ."],
1: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"upregulator , activator , or indirect upregulator in its interactions .",
"@subject@ initiates or enhances the activity of @object@ through direct or indirect means . an "
"upregulator ,activator , or indirect upregulator serves as the mechanism that increases the "
"function ,"
"expression , or activity of the @object@"
],
2: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as a "
"downregulator , inhibitor , or indirect downregulator in its interactions .",
"@subject@ interacts with the gene @object@ , resulting in a decrease in the gene's "
"activity or expression . This interaction can occur through direct inhibition , acting as a "
"downregulator , or through indirect means , where the compound causes a reduction in the gene's "
"function or expression without directly binding to it . Such mechanisms are crucial in "
"understanding genetic regulation and can have significant implications in fields like "
"pharmacology and gene therapy ."
],
3: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"agonist , agonist activator , or agonist inhibitor in its interactions .",
"@subject@ interacts with the gene @object@ in a manner that modulates its activity positively ( "
"as an agonist or agonist activator ) or negatively ( as an agonist inhibitor ) . An agonist "
"interaction typically increases the gene's activity or the activity of proteins expressed by "
"the gene , whereas an agonist activator enhances this effect further . Conversely , an agonist "
"inhibitor would paradoxically bind in a manner that initially mimics an agonist's action but "
"ultimately inhibits the gene's activity or its downstream effects ."
],
4: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"antagonist in its interactions .",
"@subject@ interacts with the gene @object@ by acting as an antagonist . This means that the "
"compound blocks or diminishes the gene's normal activity or the activity of the protein product "
"expressed by the gene . Antagonist interactions are significant in the regulation of biological "
"pathways and have wide-ranging implications in therapeutic interventions , where they can be "
"used to modulate the effects of genes involved in disease processes ."
],
5: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as a "
"substrate , product of, or substrate product of in its interactions .",
"@subject@ engages with the gene @object@ in a manner where it acts as a substrate , is a product"
"of, or both a substrate and product within the gene's associated biochemical pathways ."
]}
# id2description = {0: "there are no relations between the compound @subject@ and gene @object@ .",
# 1: "the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
# "upregulator, activator,or indirect upregulator in its interactions .",
# 2: "the compound @subject@ has been identified to engage with thegene @object@ , manifesting as a "
# "downregulator, inhibitor, or indirect downregulator in its interactions .",
# 3: "the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
# "agonist, agonist activator, or agonist inhibitor in its interactions .",
# 4: "the compound @subject@ has been identified toengage with the gene @object@ , manifesting as an "
# "antagonist in its interactions .",
# 5: "the compound @subject@ hasbeen identified to engage with the gene @object@ , manifesting as a "
# "substrate, product of, or substrate product ofin its interactions ."}
# id2description = {0: "there are no relations between the compound @subject@ and gene @object@ .",
# 1: "@subject@ engages @object@ , with upregulator , activator , or indirect upregulator .",
# 2: "@subject@ is proved to be associated with @object@ , in downregulator , inhibitor , or indirect "
# "downregulator .",
# 3: "@subject@ interacts with @object@ , in agonist , agonist activator , or agonist inhibitor .",
# 4: "@subject@ is engaging @object@ , manifesting as an antagonist in the interactions .",
# 5: "the compound @subject@ has been identified to interact with the gene @object@ , as a "
# "substrate , product of , or substrate product of in its interactions ."}
# id2description = {0: "there are no relations between the compound @subject@ and gene @object@ .",
# 1: '@subject@ initiates or enhances the activity of @object@ through direct or indirect means . An '
# 'upregulator ,'
# 'activator , or indirect upregulator serves as the mechanism that increases the function , '
# 'expression , or activity'
# 'of the @object@',
# 2: "@subject@ interacts with the gene @object@ , resulting in a decrease in the gene's "
# "activity or expression . This interaction can occur through direct inhibition , acting as a "
# "downregulator , or through indirect means , where the compound causes a reduction in the gene's "
# "function or expression without directly binding to it . Such mechanisms are crucial in "
# "understanding genetic regulation and can have significant implications in fields like "
# "pharmacology and gene therapy .",
# 3: "@subject@ interacts with the gene @object@ in a manner that modulates its activity positively ( "
# "as an agonist or agonist activator ) or negatively ( as an agonist inhibitor ) . An agonist "
# "interaction typically increases the gene's activity or the activity of proteins expressed by "
# "the gene , whereas an agonist activator enhances this effect further . Conversely , an agonist "
# "inhibitor would paradoxically bind in a manner that initially mimics an agonist's action but "
# "ultimately inhibits the gene's activity or its downstream effects .",
# 4: "@subject@ interacts with the gene @object@ by acting as an antagonist . This means that the "
# "compound blocks or diminishes the gene's normal activity or the activity of the protein product "
# "expressed by the gene . Antagonist interactions are significant in the regulation of biological "
# "pathways and have wide-ranging implications in therapeutic interventions , where they can be "
# "used to modulate the effects of genes involved in disease processes .",
# 5: "@subject@ engages with the gene @object@ in a manner where it acts as a substrate , is a product "
# "of, or both a substrate and product within the gene's associated biochemical pathways ."}
tokenized_id2description = {key: [s.lower().split() for s in value] for key, value in id2description.items()}
def add_description_words(tokenizer, tokenized_id2description):
unk_words = []
for k, v in tokenized_id2description.items():
for wds in v:
for w in wds:
if w not in tokenizer.vocab:
unk_words.append(w)
tokenizer.add_tokens(unk_words)
CLS = "[CLS]"
SEP = "[SEP]"
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
sub_idx,
obj_idx,
descriptions_input_ids,
descriptions_input_mask,
descriptions_type_ids,
descriptions_sub_idx,
descriptions_obj_idx):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.sub_idx = sub_idx
self.obj_idx = obj_idx
self.descriptions_input_ids = descriptions_input_ids
self.descriptions_input_mask = descriptions_input_mask
self.descriptions_type_ids = descriptions_type_ids
self.descriptions_sub_idx = descriptions_sub_idx
self.descriptions_obj_idx = descriptions_obj_idx
def add_marker_tokens(tokenizer, ner_labels):
new_tokens = ['<SUBJ_START>', '<SUBJ_END>', '<OBJ_START>', '<OBJ_END>']
for label in ner_labels:
new_tokens.append('<SUBJ_START=%s>' % label)
new_tokens.append('<SUBJ_END=%s>' % label)
new_tokens.append('<OBJ_START=%s>' % label)
new_tokens.append('<OBJ_END=%s>' % label)
for label in ner_labels:
new_tokens.append('<SUBJ=%s>' % label)
new_tokens.append('<OBJ=%s>' % label)
new_tokens = [token.lower() for token in new_tokens]
tokenizer.add_tokens(new_tokens)
logger.info('# vocab after adding markers: %d' % len(tokenizer))
# def convert_examples_to_features(examples, label2id, max_seq_length, tokenizer, special_tokens,
# tokenized_id2description, unused_tokens=True):
# """
# Loads a data file into a list of `InputBatch`s.
# unused_tokens: whether use [unused1] [unused2] as special tokens
# """
#
# def get_special_token(w):
# if w not in special_tokens:
# if unused_tokens:
# special_tokens[w] = "[unused%d]" % (len(special_tokens) + 1)
# else:
# special_tokens[w] = ('<' + w + '>').lower()
# return special_tokens[w]
#
# num_tokens = 0
# max_tokens = 0
# num_fit_examples = 0
# num_shown_examples = 0
# features = []
# for (ex_index, example) in enumerate(examples):
# if ex_index % 10000 == 0:
# logger.info("Writing example %d of %d" % (ex_index, len(examples)))
#
# tokens = [CLS]
# SUBJECT_START = get_special_token("SUBJ_START")
# SUBJECT_END = get_special_token("SUBJ_END")
# OBJECT_START = get_special_token("OBJ_START")
# OBJECT_END = get_special_token("OBJ_END")
# SUBJECT_NER = get_special_token("SUBJ=%s" % example['subj_type'])
# OBJECT_NER = get_special_token("OBJ=%s" % example['obj_type'])
#
# SUBJECT_START_NER = get_special_token("SUBJ_START=%s" % example['subj_type'])
# SUBJECT_END_NER = get_special_token("SUBJ_END=%s" % example['subj_type'])
# OBJECT_START_NER = get_special_token("OBJ_START=%s" % example['obj_type'])
# OBJECT_END_NER = get_special_token("OBJ_END=%s" % example['obj_type'])
#
# for i, token in enumerate(example['token']):
# if i == example['subj_start']:
# sub_idx = len(tokens)
# tokens.append(SUBJECT_START_NER)
# if i == example['obj_start']:
# obj_idx = len(tokens)
# tokens.append(OBJECT_START_NER)
# for sub_token in tokenizer.tokenize(token):
# tokens.append(sub_token)
# if i == example['subj_end']:
# sub_idx_end = len(tokens)
# tokens.append(SUBJECT_END_NER)
# if i == example['obj_end']:
# obj_idx_end = len(tokens)
# tokens.append(OBJECT_END_NER)
# tokens.append(SEP)
#
# subject = tokens[sub_idx:sub_idx_end + 1]
# object = tokens[obj_idx:obj_idx_end + 1]
#
# num_tokens += len(tokens)
# max_tokens = max(max_tokens, len(tokens))
#
# if len(tokens) > max_seq_length:
# tokens = tokens[:max_seq_length]
# if sub_idx >= max_seq_length:
# sub_idx = 0
# if obj_idx >= max_seq_length:
# obj_idx = 0
# else:
# num_fit_examples += 1
#
# segment_ids = [0] * len(tokens)
# input_ids = tokenizer.convert_tokens_to_ids(tokens)
# input_mask = [1] * len(input_ids)
# padding = [0] * (max_seq_length - len(input_ids))
# input_ids += padding
# input_mask += padding
# segment_ids += padding
# label_id = label2id[example['relation']]
#
# assert len(input_ids) == max_seq_length
# assert len(input_mask) == max_seq_length
# assert len(segment_ids) == max_seq_length
#
# descriptions_input_ids = []
# descriptions_input_mask = []
# descriptions_type_ids = []
# descriptions_sub_idx = []
# descriptions_obj_idx = []
#
# for _, description_tokens in tokenized_id2description.items():
#
# description_tokens = [CLS] + description_tokens
# description_tokens = [subject if word == '@subject@' else word for word in description_tokens]
# description_tokens = [object if word == '@object@' else word for word in description_tokens]
# description_tokens = [item for sublist in description_tokens for item in
# (sublist if isinstance(sublist, list) else [sublist])]
# description_tokens.append(SEP)
#
# des_sub_idx = description_tokens.index(SUBJECT_START_NER)
# des_obj_idx = description_tokens.index(OBJECT_START_NER)
# descriptions_sub_idx.append(des_sub_idx)
# descriptions_obj_idx.append(des_obj_idx)
#
# if len(description_tokens) > max_seq_length:
# tokens = tokens[:max_seq_length]
# if sub_idx >= max_seq_length:
# sub_idx = 0
# if obj_idx >= max_seq_length:
# obj_idx = 0
#
# description_input_ids = tokenizer.convert_tokens_to_ids(description_tokens)
# description_type_ids = [0] * len(description_tokens)
# description_input_mask = [1] * len(description_input_ids)
# padding = [0] * (max_seq_length - len(description_input_ids))
# description_input_ids += padding
# description_input_mask += padding
# description_type_ids += padding
#
# assert len(description_input_ids) == max_seq_length
# assert len(description_input_mask) == max_seq_length
# assert len(description_type_ids) == max_seq_length
#
# descriptions_input_ids.append(description_input_ids)
# descriptions_input_mask.append(description_input_mask)
# descriptions_type_ids.append(description_type_ids)
#
# if num_shown_examples < 20:
# if (ex_index < 5) or (label_id > 0):
# num_shown_examples += 1
# logger.info("*** Example ***")
# logger.info("guid: %s" % (example['id']))
# logger.info("tokens: %s" % " ".join(
# [str(x) for x in tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
# logger.info("label: %s (id = %d)" % (example['relation'], label_id))
# logger.info("sub_idx, obj_idx: %d, %d" % (sub_idx, obj_idx))
#
# features.append(
# InputFeatures(input_ids=input_ids,
# input_mask=input_mask,
# segment_ids=segment_ids,
# label_id=label_id,
# sub_idx=sub_idx,
# obj_idx=obj_idx,
# descriptions_input_ids=descriptions_input_ids,
# descriptions_input_mask=descriptions_input_mask,
# descriptions_type_ids=descriptions_type_ids,
# descriptions_sub_idx=descriptions_sub_idx,
# descriptions_obj_idx=descriptions_obj_idx))
# logger.info("Average #tokens: %.2f" % (num_tokens * 1.0 / len(examples)))
# logger.info("Max #tokens: %d" % max_tokens)
# logger.info("%d (%.2f %%) examples can fit max_seq_length = %d" % (num_fit_examples,
# num_fit_examples * 100.0 / len(examples),
# max_seq_length))
# return features
def convert_examples_to_features(examples, label2id, max_seq_length, tokenizer, special_tokens,
tokenized_id2description, unused_tokens=False, multiple_descriptions=False):
"""
Loads a data file into a list of `InputBatch`s.
unused_tokens: whether use [unused1] [unused2] as special tokens
"""
def get_special_token(w):
if w not in special_tokens:
if unused_tokens:
special_tokens[w] = "[unused%d]" % (len(special_tokens) + 1)
else:
special_tokens[w] = ('<' + w + '>').lower()
return special_tokens[w]
def get_description_input(description_tokens):
description_tokens = [CLS] + description_tokens
description_tokens = [subject if word == '@subject@' else word for word in description_tokens]
description_tokens = [object if word == '@object@' else word for word in description_tokens]
description_tokens = [item for sublist in description_tokens for item in
(sublist if isinstance(sublist, list) else [sublist])]
description_tokens.append(SEP)
des_sub_idx = description_tokens.index(SUBJECT_START_NER)
des_obj_idx = description_tokens.index(OBJECT_START_NER)
descriptions_sub_idx.append(des_sub_idx)
descriptions_obj_idx.append(des_obj_idx)
description_input_ids = tokenizer.convert_tokens_to_ids(description_tokens)
description_type_ids = [0] * len(description_tokens)
description_input_mask = [1] * len(description_input_ids)
padding = [0] * (max_seq_length - len(description_input_ids))
description_input_ids += padding
description_input_mask += padding
description_type_ids += padding
assert len(description_input_ids) == max_seq_length
assert len(description_input_mask) == max_seq_length
assert len(description_type_ids) == max_seq_length
return description_input_ids, description_input_mask, description_type_ids
num_tokens = 0
max_tokens = 0
num_fit_examples = 0
num_shown_examples = 0
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens = [CLS]
SUBJECT_START = get_special_token("SUBJ_START")
SUBJECT_END = get_special_token("SUBJ_END")
OBJECT_START = get_special_token("OBJ_START")
OBJECT_END = get_special_token("OBJ_END")
SUBJECT_NER = get_special_token("SUBJ=%s" % example['subj_type'])
OBJECT_NER = get_special_token("OBJ=%s" % example['obj_type'])
SUBJECT_START_NER = get_special_token("SUBJ_START=%s" % example['subj_type'])
SUBJECT_END_NER = get_special_token("SUBJ_END=%s" % example['subj_type'])
OBJECT_START_NER = get_special_token("OBJ_START=%s" % example['obj_type'])
OBJECT_END_NER = get_special_token("OBJ_END=%s" % example['obj_type'])
for i, token in enumerate(example['token']):
if i == example['subj_start']:
sub_idx = len(tokens)
tokens.append(SUBJECT_START_NER)
if i == example['obj_start']:
obj_idx = len(tokens)
tokens.append(OBJECT_START_NER)
for sub_token in tokenizer.tokenize(token):
tokens.append(sub_token)
if i == example['subj_end']:
sub_idx_end = len(tokens)
tokens.append(SUBJECT_END_NER)
if i == example['obj_end']:
obj_idx_end = len(tokens)
tokens.append(OBJECT_END_NER)
tokens.append(SEP)
subject = tokens[sub_idx:sub_idx_end + 1]
object = tokens[obj_idx:obj_idx_end + 1]
num_tokens += len(tokens)
max_tokens = max(max_tokens, len(tokens))
if len(tokens) > max_seq_length:
tokens = tokens[:max_seq_length]
if sub_idx >= max_seq_length:
sub_idx = 0
if obj_idx >= max_seq_length:
obj_idx = 0
else:
num_fit_examples += 1
segment_ids = [0] * len(tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
label_id = label2id[example['relation']]
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
descriptions_input_ids = []
descriptions_input_mask = []
descriptions_type_ids = []
descriptions_sub_idx = []
descriptions_obj_idx = []
if not multiple_descriptions:
for _, description_tokens_list in tokenized_id2description.items():
# description_tokens = random.choice(description_tokens_list)
description_tokens = description_tokens_list[0]
description_input_ids, description_input_mask, description_type_ids = get_description_input(description_tokens)
descriptions_input_ids.append(description_input_ids)
descriptions_input_mask.append(description_input_mask)
descriptions_type_ids.append(description_type_ids)
else:
for label, description_tokens_list in tokenized_id2description.items():
if label == label_id:
description_label_id = len(descriptions_input_ids)
description_tokens = description_tokens_list[0]
description_input_ids, description_input_mask, description_type_ids = get_description_input(
description_tokens)
descriptions_input_ids.append(description_input_ids)
descriptions_input_mask.append(description_input_mask)
descriptions_type_ids.append(description_type_ids)
else:
for description_tokens in description_tokens_list:
description_input_ids, description_input_mask, description_type_ids = get_description_input(
description_tokens)
descriptions_input_ids.append(description_input_ids)
descriptions_input_mask.append(description_input_mask)
descriptions_type_ids.append(description_type_ids)
if num_shown_examples < 20:
if (ex_index < 5) or (label_id > 0):
num_shown_examples += 1
logger.info("*** Example ***")
logger.info("guid: %s" % (example['id']))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example['relation'], label_id))
logger.info("sub_idx, obj_idx: %d, %d" % (sub_idx, obj_idx))
if multiple_descriptions:
label_id = description_label_id
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
sub_idx=sub_idx,
obj_idx=obj_idx,
descriptions_input_ids=descriptions_input_ids,
descriptions_input_mask=descriptions_input_mask,
descriptions_type_ids=descriptions_type_ids,
descriptions_sub_idx=descriptions_sub_idx,
descriptions_obj_idx=descriptions_obj_idx))
logger.info("Average #tokens: %.2f" % (num_tokens * 1.0 / len(examples)))
logger.info("Max #tokens: %d" % max_tokens)
logger.info("%d (%.2f %%) examples can fit max_seq_length = %d" % (num_fit_examples,
num_fit_examples * 100.0 / len(examples),
max_seq_length))
return features
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def compute_f1(preds, labels, e2e_ngold):
n_gold = n_pred = n_correct = 0
for pred, label in zip(preds, labels):
if pred != 0:
n_pred += 1
if label != 0:
n_gold += 1
if (pred != 0) and (label != 0) and (pred == label):
n_correct += 1
if n_correct == 0:
return {'precision': 0.0, 'recall': 0.0, 'f1': 0.0}
else:
prec = n_correct * 1.0 / n_pred
recall = n_correct * 1.0 / n_gold
if prec + recall > 0:
f1 = 2.0 * prec * recall / (prec + recall)
else:
f1 = 0.0
if e2e_ngold is not None:
e2e_recall = n_correct * 1.0 / e2e_ngold
e2e_f1 = 2.0 * prec * e2e_recall / (prec + e2e_recall)
else:
e2e_recall = e2e_f1 = 0.0
return {'precision': prec, 'recall': e2e_recall, 'f1': e2e_f1, 'task_recall': recall, 'task_f1': f1,
'n_correct': n_correct, 'n_pred': n_pred, 'n_gold': e2e_ngold, 'task_ngold': n_gold}
def evaluate(model, device, eval_dataloader, num_labels, eval_label_ids, batch_size, seq_len, e2e_ngold=None):
model.eval()
# eval_loss = 0
nb_eval_steps = 0
preds = []
for input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids, descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
# label_ids = label_ids.to(device)
sub_idx = sub_idx.to(device)
obj_idx = obj_idx.to(device)
batch_size, num_labels, _ = descriptions_input_ids.size()
descriptions_input_ids = descriptions_input_ids.reshape(batch_size * num_labels, seq_len)
descriptions_input_mask = descriptions_input_mask.reshape(batch_size * num_labels, seq_len)
descriptions_type_ids = descriptions_type_ids.reshape(batch_size * num_labels, seq_len)
descriptions_sub_idx = descriptions_sub_idx.reshape(batch_size * num_labels)
descriptions_obj_idx = descriptions_obj_idx.reshape(batch_size * num_labels)
descriptions_input_ids = descriptions_input_ids.to(device)
descriptions_input_mask = descriptions_input_mask.to(device)
descriptions_type_ids = descriptions_type_ids.to(device)
descriptions_sub_idx = descriptions_sub_idx.to(device)
descriptions_obj_idx = descriptions_obj_idx.to(device)
with torch.no_grad():
scores = model(input_ids,
input_mask,
segment_ids,
labels=None,
sub_idx=sub_idx,
obj_idx=obj_idx,
descriptions_input_ids=descriptions_input_ids,
descriptions_input_mask=descriptions_input_mask,
descriptions_type_ids=descriptions_type_ids,
descriptions_sub_idx=descriptions_sub_idx,
descriptions_obj_idx=descriptions_obj_idx,
return_dict=True)
# loss_fct = CrossEntropyLoss()
# tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
# eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(scores.detach().cpu().numpy())
else:
preds[0] = np.append(
preds[0], scores.detach().cpu().numpy(), axis=0)
# eval_loss = eval_loss / nb_eval_steps
# scores = preds[0]
preds = np.argmax(preds[0], axis=1)
result = compute_f1(preds, eval_label_ids.numpy(), e2e_ngold=e2e_ngold)
result['accuracy'] = simple_accuracy(preds, eval_label_ids.numpy())
# result['eval_loss'] = eval_loss
return preds, result
def print_pred_json(eval_data, eval_examples, preds, id2label, output_file):
rels = dict()
for ex, pred in zip(eval_examples, preds):
doc_sent, sub, obj = decode_sample_id(ex['id'])
if doc_sent not in rels:
rels[doc_sent] = []
if pred != 0:
rels[doc_sent].append([sub[0], sub[1], obj[0], obj[1], id2label[pred]])
js = eval_data.js
for doc in js:
doc['predicted_relations'] = []
for sid in range(len(doc['sentences'])):
k = '%s@%d' % (doc['doc_key'], sid)
doc['predicted_relations'].append(rels.get(k, []))
logger.info('Output predictions to %s..' % (output_file))
with open(output_file, 'w') as f:
f.write('\n'.join(json.dumps(doc) for doc in js))
def setseed(seed):
random.seed(seed)
np.random.seed(args.seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def save_trained_model(output_dir, model, tokenizer):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
logger.info('Saving model to %s' % output_dir)
model.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
def main(args):
# if 'albert' in args.model:
# RelationModel = AlbertForRelation
# args.add_new_tokens = True
# else:
# RelationModel = BertForRelation
if args.train_befre:
from relation.befre import BEFRE, BEFREConfig
else:
from relation.unified_model import BEFRE, BEFREConfig
config = BEFREConfig(
pretrained_model_name_or_path=args.model,
cache_dir=str(PYTORCH_PRETRAINED_BERT_CACHE),
revision=None,
use_auth_token=True,
hidden_dropout_prob=args.drop_out,
)
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
# train set
if args.do_train:
train_dataset, train_examples, train_nrel = generate_relation_data(args.train_file, use_gold=True,
context_window=args.context_window)
# dev set
if (args.do_eval and args.do_train) or (args.do_eval and not (args.eval_test)):
eval_dataset, eval_examples, eval_nrel = generate_relation_data(
os.path.join(args.entity_output_dir, args.entity_predictions_dev), use_gold=args.eval_with_gold,
context_window=args.context_window)
# test set
if args.eval_test:
test_dataset, test_examples, test_nrel = generate_relation_data(
os.path.join(args.entity_output_dir, args.entity_predictions_test), use_gold=args.eval_with_gold,
context_window=args.context_window)
setseed(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.do_train:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "train.log"), 'w'))
else:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "eval.log"), 'w'))
logger.info(sys.argv)
logger.info(args)
logger.info("device: {}, n_gpu: {}".format(
device, n_gpu))
# get label_list
if os.path.exists(os.path.join(args.output_dir, 'label_list.json')):
with open(os.path.join(args.output_dir, 'label_list.json'), 'r') as f:
label_list = json.load(f)
else:
label_list = [args.negative_label] + task_rel_labels[args.task]
with open(os.path.join(args.output_dir, 'label_list.json'), 'w') as f:
json.dump(label_list, f)
label2id = {label: i for i, label in enumerate(label_list)}
id2label = {i: label for i, label in enumerate(label_list)}
num_labels = len(label_list)
tokenizer = AutoTokenizer.from_pretrained(args.model, do_lower_case=args.do_lower_case)
add_description_words(tokenizer, tokenized_id2description)
if args.add_new_tokens:
add_marker_tokens(tokenizer, task_ner_labels[args.task])
if os.path.exists(os.path.join(args.output_dir, 'special_tokens.json')):
with open(os.path.join(args.output_dir, 'special_tokens.json'), 'r') as f:
special_tokens = json.load(f)
else:
special_tokens = {}
if args.do_eval and (args.do_train or not (args.eval_test)):
eval_features = convert_examples_to_features(
eval_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description,
unused_tokens=not (args.add_new_tokens))
logger.info("***** Dev *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in eval_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in eval_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in eval_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in eval_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in eval_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in eval_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size)
eval_label_ids = all_label_ids
with open(os.path.join(args.output_dir, 'special_tokens.json'), 'w') as f:
json.dump(special_tokens, f)
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description,
unused_tokens=not (args.add_new_tokens), multiple_descriptions= args.multi_descriptions)
if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
train_features = sorted(train_features, key=lambda f: np.sum(f.input_mask))
else:
random.shuffle(train_features)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in train_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in train_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in train_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in train_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in train_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in train_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
train_dataloader = DataLoader(train_data, batch_size=args.train_batch_size)
train_batches = [batch for batch in train_dataloader]
if args.train_num_examples:
train_batches = train_batches[:args.train_num_examples]
num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
logger.info("***** Training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
best_result = None
eval_step = max(1, len(train_batches) // args.eval_per_epoch)
lr = args.learning_rate
model = BEFRE(config)
# model = RelationModel.from_pretrained(
# args.model, cache_dir=str(PYTORCH_PRETRAINED_BERT_CACHE), num_rel_labels=num_labels)
model.input_encoder.resize_token_embeddings(len(tokenizer))
model.description_encoder.resize_token_embeddings(len(tokenizer))
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer
if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr, correct_bias=not (args.bertadam))
scheduler = get_linear_schedule_with_warmup(optimizer,
int(num_train_optimization_steps * args.warmup_proportion),
num_train_optimization_steps)
start_time = time.time()
global_step = 0
tr_loss = 0
nb_tr_examples = 0
nb_tr_steps = 0
for epoch in range(int(args.num_train_epochs)):
model.train()
logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
if args.train_mode == 'random' or args.train_mode == 'random_sorted':
random.shuffle(train_batches)
for step, batch in enumerate(train_batches):
num_descriptions = batch[6].size(0) * batch[6].size(1)
# batch_size, _ = batch[0].size()
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids, descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx = batch
descriptions_input_ids = descriptions_input_ids.reshape(num_descriptions, args.max_seq_length)
descriptions_input_mask = descriptions_input_mask.reshape(num_descriptions, args.max_seq_length)
descriptions_type_ids = descriptions_type_ids.reshape(num_descriptions, args.max_seq_length)
descriptions_sub_idx = descriptions_sub_idx.reshape(num_descriptions)
descriptions_obj_idx = descriptions_obj_idx.reshape(num_descriptions)
loss = model(input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids,
descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx,
return_dict=True)
if n_gpu > 1:
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
if (step + 1) % eval_step == 0:
logger.info('Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'.format(
epoch, step + 1, len(train_batches),
time.time() - start_time, tr_loss / nb_tr_steps))
save_model = False
if args.do_eval:
preds, result = evaluate(model=model,
device=device,
eval_dataloader=eval_dataloader,
eval_label_ids=eval_label_ids,
num_labels=num_labels,
batch_size=args.eval_batch_size,
seq_len=args.max_seq_length,
e2e_ngold=eval_nrel,
)
model.train()
result['global_step'] = global_step
result['epoch'] = epoch
result['learning_rate'] = lr
result['batch_size'] = args.train_batch_size
if (best_result is None) or (result[args.eval_metric] > best_result[args.eval_metric]):
best_result = result
logger.info("!!! Best dev %s (lr=%s, epoch=%d): %.2f" %
(args.eval_metric, str(lr), epoch, result[args.eval_metric] * 100.0))
save_trained_model(args.output_dir, model, tokenizer)
evaluation_results = {}
if args.do_eval:
logger.info(special_tokens)
if args.eval_test:
eval_dataset = test_dataset
eval_examples = test_examples
eval_features = convert_examples_to_features(
test_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description,
unused_tokens=not (args.add_new_tokens))
eval_nrel = test_nrel
logger.info(special_tokens)
logger.info("***** Test *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in eval_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in eval_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in train_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in train_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in train_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in train_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in train_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size)
eval_label_ids = all_label_ids
model = BEFRE.from_pretrained(args.output_dir)
model.to(device)
preds, result = evaluate(model=model,
device=device,
eval_dataloader=eval_dataloader,
eval_label_ids=eval_label_ids,
num_labels=num_labels,
batch_size=args.eval_batch_size,
seq_len=args.max_seq_length,
e2e_ngold=eval_nrel,
)
logger.info('*** Evaluation Results ***')
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
print_pred_json(eval_dataset, eval_examples, preds, id2label,
os.path.join(args.output_dir, args.prediction_file))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default=None, type=str, required=True)
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--eval_per_epoch", default=10, type=int,
help="How many times it evaluates on dev set per epoch")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--negative_label", default="no_relation", type=str)
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--train_file", default=None, type=str, help="The path of the training data.")
parser.add_argument("--train_mode", type=str, default='random_sorted',
choices=['random', 'sorted', 'random_sorted'])
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--eval_test", action="store_true", help="Whether to evaluate on final test set.")
parser.add_argument("--eval_with_gold", action="store_true",
help="Whether to evaluate the relation model with gold entities provided.")
parser.add_argument("--train_batch_size", default=32, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,