-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_knn_relation.py
826 lines (710 loc) · 39.9 KB
/
run_knn_relation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
"""
This code is based on the file in PURE repo: https://github.com/princeton-nlp/PURE/blob/main/run_relation.py
"""
import argparse
import logging
import os
import random
import time
import json
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
# from collections import Counter
#
# from torch.nn import CrossEntropyLoss
from transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
# from relation.models import BertForRelation, AlbertForRelation
from transformers import AutoTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from relation.utils import generate_relation_data, decode_sample_id
from shared.const import task_rel_labels, task_ner_labels
# from relation.config import BEFREConfig
from relation.befre import BEFRE, BEFREConfig
from relation.unified_model import BEFRE, BEFREConfig
id2description = {0: ["there are no relations between the compound @subject@ and gene @object@ . such as : ",],
1: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"upregulator , activator , or indirect upregulator in its interactions . such as : ",
],
2: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as a "
"downregulator , inhibitor , or indirect downregulator in its interactions . such as : ",
],
3: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"agonist , agonist activator , or agonist inhibitor in its interactions . such as : ",
],
4: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as an "
"antagonist in its interactions . such as : ",
],
5: ["the compound @subject@ has been identified to engage with the gene @object@ , manifesting as a "
"substrate , product of, or substrate product of in its interactions . such as : ",
]}
tokenized_id2description = {key: value[0].lower().split() for key, value in id2description.items()}
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neighbors import NearestNeighbors
import numpy as np
def search_tfidf_example(source, train_id2examples, tokenized_id2description):
updated_id2description = {key: None for key in tokenized_id2description}
source_token = source['token']
docid = source['docid']
for label, examples in train_id2examples.items():
examples = [example for example in examples if example['docid'] != docid]
search_domain = [example['token'] for example in examples]
input_sequence = ' '.join(source_token)
domain_sequences = [' '.join(seq) for seq in search_domain]
all_sequences = [input_sequence] + domain_sequences
# Vectorize the sequences
vectorizer = CountVectorizer()
vectorized_data = vectorizer.fit_transform(all_sequences).toarray()
# Separate the input vector from the domain vectors
input_vector = vectorized_data[0]
domain_vectors = vectorized_data[1:]
# Use NearestNeighbors to find the most similar sequence
nn = NearestNeighbors(n_neighbors=1, metric='euclidean') # Using Euclidean distance
nn.fit(domain_vectors)
# Find the nearest neighbor to the input sequence
distance, index = nn.kneighbors([input_vector])
# Output the most similar sequence
most_similar_sequence = search_domain[index[0][0]]
updated_id2description[label] = tokenized_id2description[label] + most_similar_sequence
return updated_id2description
def add_description_words(tokenizer, tokenized_id2description):
unk_words = []
for k, v in tokenized_id2description.items():
for wds in v:
for w in wds:
if w not in tokenizer.vocab:
unk_words.append(w)
tokenizer.add_tokens(unk_words)
CLS = "[CLS]"
SEP = "[SEP]"
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
sub_idx,
obj_idx,
descriptions_input_ids,
descriptions_input_mask,
descriptions_type_ids,
descriptions_sub_idx,
descriptions_obj_idx):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.sub_idx = sub_idx
self.obj_idx = obj_idx
self.descriptions_input_ids = descriptions_input_ids
self.descriptions_input_mask = descriptions_input_mask
self.descriptions_type_ids = descriptions_type_ids
self.descriptions_sub_idx = descriptions_sub_idx
self.descriptions_obj_idx = descriptions_obj_idx
def add_marker_tokens(tokenizer, ner_labels):
new_tokens = ['<SUBJ_START>', '<SUBJ_END>', '<OBJ_START>', '<OBJ_END>']
for label in ner_labels:
new_tokens.append('<SUBJ_START=%s>' % label)
new_tokens.append('<SUBJ_END=%s>' % label)
new_tokens.append('<OBJ_START=%s>' % label)
new_tokens.append('<OBJ_END=%s>' % label)
for label in ner_labels:
new_tokens.append('<SUBJ=%s>' % label)
new_tokens.append('<OBJ=%s>' % label)
new_tokens = [token.lower() for token in new_tokens]
tokenizer.add_tokens(new_tokens)
logger.info('# vocab after adding markers: %d' % len(tokenizer))
def convert_examples_to_features(examples, label2id, max_seq_length, tokenizer, special_tokens,
tokenized_id2description, train_id2examples, unused_tokens=False, multiple_descriptions=False, use_knn=True):
"""
Loads a data file into a list of `InputBatch`s.
unused_tokens: whether use [unused1] [unused2] as special tokens
"""
def get_special_token(w):
if w not in special_tokens:
if unused_tokens:
special_tokens[w] = "[unused%d]" % (len(special_tokens) + 1)
else:
special_tokens[w] = ('<' + w + '>').lower()
return special_tokens[w]
def get_description_input(description_tokens):
description_tokens = [CLS] + description_tokens
description_tokens = [subject if word == '@subject@' else word for word in description_tokens]
description_tokens = [object if word == '@object@' else word for word in description_tokens]
description_tokens = [item for sublist in description_tokens for item in
(sublist if isinstance(sublist, list) else [sublist])]
description_tokens.append(SEP)
des_sub_idx = description_tokens.index(SUBJECT_START_NER)
des_obj_idx = description_tokens.index(OBJECT_START_NER)
descriptions_sub_idx.append(des_sub_idx)
descriptions_obj_idx.append(des_obj_idx)
description_input_ids = tokenizer.convert_tokens_to_ids(description_tokens)
description_type_ids = [0] * len(description_tokens)
description_input_mask = [1] * len(description_input_ids)
padding = [0] * (max_seq_length - len(description_input_ids))
description_input_ids += padding
description_input_mask += padding
description_type_ids += padding
assert len(description_input_ids) == max_seq_length
assert len(description_input_mask) == max_seq_length
assert len(description_type_ids) == max_seq_length
return description_input_ids, description_input_mask, description_type_ids
num_tokens = 0
max_tokens = 0
num_fit_examples = 0
num_shown_examples = 0
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens = [CLS]
SUBJECT_START_NER = get_special_token("SUBJ_START=%s" % example['subj_type'])
SUBJECT_END_NER = get_special_token("SUBJ_END=%s" % example['subj_type'])
OBJECT_START_NER = get_special_token("OBJ_START=%s" % example['obj_type'])
OBJECT_END_NER = get_special_token("OBJ_END=%s" % example['obj_type'])
for i, token in enumerate(example['token']):
if i == example['subj_start']:
sub_idx = len(tokens)
tokens.append(SUBJECT_START_NER)
if i == example['obj_start']:
obj_idx = len(tokens)
tokens.append(OBJECT_START_NER)
for sub_token in tokenizer.tokenize(token):
tokens.append(sub_token)
if i == example['subj_end']:
sub_idx_end = len(tokens)
tokens.append(SUBJECT_END_NER)
if i == example['obj_end']:
obj_idx_end = len(tokens)
tokens.append(OBJECT_END_NER)
tokens.append(SEP)
subject = tokens[sub_idx:sub_idx_end + 1]
object = tokens[obj_idx:obj_idx_end + 1]
num_tokens += len(tokens)
max_tokens = max(max_tokens, len(tokens))
if len(tokens) > max_seq_length:
tokens = tokens[:max_seq_length]
if sub_idx >= max_seq_length:
sub_idx = 0
if obj_idx >= max_seq_length:
obj_idx = 0
else:
num_fit_examples += 1
segment_ids = [0] * len(tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
label_id = label2id[example['relation']]
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
descriptions_input_ids = []
descriptions_input_mask = []
descriptions_type_ids = []
descriptions_sub_idx = []
descriptions_obj_idx = []
if use_knn:
# id2description = search_tfidf_example(example, train_id2examples, tokenized_id2description)
id2description = tokenized_id2description.copy()
for label in id2description.keys():
id2description[label] = tokenized_id2description[label] + tokens[1:-1]
else:
id2description = {key: value[:-3] for key, value in tokenized_id2description.items()}
for _, description_tokens_list in id2description.items():
description_tokens = description_tokens_list
description_input_ids, description_input_mask, description_type_ids = get_description_input(description_tokens)
descriptions_input_ids.append(description_input_ids)
descriptions_input_mask.append(description_input_mask)
descriptions_type_ids.append(description_type_ids)
if num_shown_examples < 20:
if (ex_index < 5) or (label_id > 0):
num_shown_examples += 1
logger.info("*** Example ***")
logger.info("guid: %s" % (example['id']))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example['relation'], label_id))
logger.info("sub_idx, obj_idx: %d, %d" % (sub_idx, obj_idx))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
sub_idx=sub_idx,
obj_idx=obj_idx,
descriptions_input_ids=descriptions_input_ids,
descriptions_input_mask=descriptions_input_mask,
descriptions_type_ids=descriptions_type_ids,
descriptions_sub_idx=descriptions_sub_idx,
descriptions_obj_idx=descriptions_obj_idx))
logger.info("Average #tokens: %.2f" % (num_tokens * 1.0 / len(examples)))
logger.info("Max #tokens: %d" % max_tokens)
logger.info("%d (%.2f %%) examples can fit max_seq_length = %d" % (num_fit_examples,
num_fit_examples * 100.0 / len(examples),
max_seq_length))
return features
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def compute_f1(preds, labels, e2e_ngold):
n_gold = n_pred = n_correct = 0
for pred, label in zip(preds, labels):
if pred != 0:
n_pred += 1
if label != 0:
n_gold += 1
if (pred != 0) and (label != 0) and (pred == label):
n_correct += 1
if n_correct == 0:
return {'precision': 0.0, 'recall': 0.0, 'f1': 0.0}
else:
prec = n_correct * 1.0 / n_pred
recall = n_correct * 1.0 / n_gold
if prec + recall > 0:
f1 = 2.0 * prec * recall / (prec + recall)
else:
f1 = 0.0
if e2e_ngold is not None:
e2e_recall = n_correct * 1.0 / e2e_ngold
e2e_f1 = 2.0 * prec * e2e_recall / (prec + e2e_recall)
else:
e2e_recall = e2e_f1 = 0.0
return {'precision': prec, 'recall': e2e_recall, 'f1': e2e_f1, 'task_recall': recall, 'task_f1': f1,
'n_correct': n_correct, 'n_pred': n_pred, 'n_gold': e2e_ngold, 'task_ngold': n_gold}
def evaluate(model, device, eval_dataloader, num_labels, eval_label_ids, batch_size, seq_len, e2e_ngold=None):
model.eval()
# eval_loss = 0
nb_eval_steps = 0
preds = []
for input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids, descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
# label_ids = label_ids.to(device)
sub_idx = sub_idx.to(device)
obj_idx = obj_idx.to(device)
batch_size, num_labels, _ = descriptions_input_ids.size()
descriptions_input_ids = descriptions_input_ids.reshape(batch_size * num_labels, seq_len)
descriptions_input_mask = descriptions_input_mask.reshape(batch_size * num_labels, seq_len)
descriptions_type_ids = descriptions_type_ids.reshape(batch_size * num_labels, seq_len)
descriptions_sub_idx = descriptions_sub_idx.reshape(batch_size * num_labels)
descriptions_obj_idx = descriptions_obj_idx.reshape(batch_size * num_labels)
descriptions_input_ids = descriptions_input_ids.to(device)
descriptions_input_mask = descriptions_input_mask.to(device)
descriptions_type_ids = descriptions_type_ids.to(device)
descriptions_sub_idx = descriptions_sub_idx.to(device)
descriptions_obj_idx = descriptions_obj_idx.to(device)
with torch.no_grad():
scores = model(input_ids,
input_mask,
segment_ids,
labels=None,
sub_idx=sub_idx,
obj_idx=obj_idx,
descriptions_input_ids=descriptions_input_ids,
descriptions_input_mask=descriptions_input_mask,
descriptions_type_ids=descriptions_type_ids,
descriptions_sub_idx=descriptions_sub_idx,
descriptions_obj_idx=descriptions_obj_idx,
return_dict=True)
# loss_fct = CrossEntropyLoss()
# tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
# eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(scores.detach().cpu().numpy())
else:
preds[0] = np.append(
preds[0], scores.detach().cpu().numpy(), axis=0)
# eval_loss = eval_loss / nb_eval_steps
# scores = preds[0]
preds = np.argmax(preds[0], axis=1)
result = compute_f1(preds, eval_label_ids.numpy(), e2e_ngold=e2e_ngold)
result['accuracy'] = simple_accuracy(preds, eval_label_ids.numpy())
# result['eval_loss'] = eval_loss
return preds, result
def print_pred_json(eval_data, eval_examples, preds, id2label, output_file):
rels = dict()
for ex, pred in zip(eval_examples, preds):
doc_sent, sub, obj = decode_sample_id(ex['id'])
if doc_sent not in rels:
rels[doc_sent] = []
if pred != 0:
rels[doc_sent].append([sub[0], sub[1], obj[0], obj[1], id2label[pred]])
js = eval_data.js
for doc in js:
doc['predicted_relations'] = []
for sid in range(len(doc['sentences'])):
k = '%s@%d' % (doc['doc_key'], sid)
doc['predicted_relations'].append(rels.get(k, []))
logger.info('Output predictions to %s..' % (output_file))
with open(output_file, 'w') as f:
f.write('\n'.join(json.dumps(doc) for doc in js))
def setseed(seed):
random.seed(seed)
np.random.seed(args.seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def save_trained_model(output_dir, model, tokenizer):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
logger.info('Saving model to %s' % output_dir)
model.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
def main(args):
# if 'albert' in args.model:
# RelationModel = AlbertForRelation
# args.add_new_tokens = True
# else:
# RelationModel = BertForRelation
if args.train_befre:
from relation.befre import BEFRE, BEFREConfig
else:
# from relation.unified_model import BEFRE, BEFREConfig
from relation.uni_model import BEFRE, BEFREConfig
config = BEFREConfig(
pretrained_model_name_or_path=args.model,
cache_dir=str(PYTORCH_PRETRAINED_BERT_CACHE),
revision=None,
use_auth_token=True,
hidden_dropout_prob=args.drop_out,
)
setseed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
# train set
train_dataset, train_examples, train_nrel = generate_relation_data(args.train_file, use_gold=True,
context_window=args.context_window)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# get label_list
if os.path.exists(os.path.join(args.output_dir, 'label_list.json')):
with open(os.path.join(args.output_dir, 'label_list.json'), 'r') as f:
label_list = json.load(f)
else:
label_list = [args.negative_label] + task_rel_labels[args.task]
with open(os.path.join(args.output_dir, 'label_list.json'), 'w') as f:
json.dump(label_list, f)
label2id = {label: i for i, label in enumerate(label_list)}
id2label = {i: label for i, label in enumerate(label_list)}
num_labels = len(label_list)
train_id2examples = {key: [] for key in tokenized_id2description}
for example in train_examples:
label = label2id[example['relation']]
train_id2examples[label].append(example)
# dev set
if (args.do_eval and args.do_train) or (args.do_eval and not (args.eval_test)):
eval_dataset, eval_examples, eval_nrel = generate_relation_data(
os.path.join(args.entity_output_dir, args.entity_predictions_dev), use_gold=args.eval_with_gold,
context_window=args.context_window)
# test set
if args.eval_test:
test_dataset, test_examples, test_nrel = generate_relation_data(
os.path.join(args.entity_output_dir, args.entity_predictions_test), use_gold=args.eval_with_gold,
context_window=args.context_window)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if args.do_train:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "train.log"), 'w'))
else:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "eval.log"), 'w'))
logger.info(sys.argv)
logger.info(args)
logger.info("device: {}, n_gpu: {}".format(
device, n_gpu))
tokenizer = AutoTokenizer.from_pretrained(args.model, do_lower_case=args.do_lower_case)
add_description_words(tokenizer, tokenized_id2description)
if args.add_new_tokens:
add_marker_tokens(tokenizer, task_ner_labels[args.task])
if os.path.exists(os.path.join(args.output_dir, 'special_tokens.json')):
with open(os.path.join(args.output_dir, 'special_tokens.json'), 'r') as f:
special_tokens = json.load(f)
else:
special_tokens = {}
if args.do_eval and (args.do_train or not (args.eval_test)):
eval_features = convert_examples_to_features(
eval_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description, train_id2examples=train_id2examples,
unused_tokens=not (args.add_new_tokens), use_knn=True)
logger.info("***** Dev *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in eval_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in eval_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in eval_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in eval_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in eval_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in eval_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size)
eval_label_ids = all_label_ids
with open(os.path.join(args.output_dir, 'special_tokens.json'), 'w') as f:
json.dump(special_tokens, f)
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description, train_id2examples=train_id2examples,
unused_tokens=not (args.add_new_tokens), multiple_descriptions=args.multi_descriptions)
if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
train_features = sorted(train_features, key=lambda f: np.sum(f.input_mask))
else:
random.shuffle(train_features)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in train_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in train_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in train_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in train_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in train_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in train_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
train_dataloader = DataLoader(train_data, batch_size=args.train_batch_size)
train_batches = [batch for batch in train_dataloader]
if args.train_num_examples:
train_batches = train_batches[:args.train_num_examples]
num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
logger.info("***** Training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
best_result = None
eval_step = max(1, len(train_batches) // args.eval_per_epoch)
lr = args.learning_rate
model = BEFRE(config)
# model = RelationModel.from_pretrained(
# args.model, cache_dir=str(PYTORCH_PRETRAINED_BERT_CACHE), num_rel_labels=num_labels)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer
if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr, correct_bias=not (args.bertadam))
scheduler = get_linear_schedule_with_warmup(optimizer,
int(num_train_optimization_steps * args.warmup_proportion),
num_train_optimization_steps)
start_time = time.time()
global_step = 0
tr_loss = 0
nb_tr_examples = 0
nb_tr_steps = 0
for epoch in range(int(args.num_train_epochs)):
model.train()
logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
if args.train_mode == 'random' or args.train_mode == 'random_sorted':
random.shuffle(train_batches)
for step, batch in enumerate(train_batches):
num_descriptions = batch[6].size(0) * batch[6].size(1)
# batch_size, _ = batch[0].size()
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids, descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx = batch
descriptions_input_ids = descriptions_input_ids.reshape(num_descriptions, args.max_seq_length)
descriptions_input_mask = descriptions_input_mask.reshape(num_descriptions, args.max_seq_length)
descriptions_type_ids = descriptions_type_ids.reshape(num_descriptions, args.max_seq_length)
descriptions_sub_idx = descriptions_sub_idx.reshape(num_descriptions)
descriptions_obj_idx = descriptions_obj_idx.reshape(num_descriptions)
loss = model(input_ids, input_mask, segment_ids, label_ids, sub_idx, obj_idx, descriptions_input_ids,
descriptions_input_mask, descriptions_type_ids, descriptions_sub_idx, descriptions_obj_idx,
return_dict=True)
if n_gpu > 1:
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
if (step + 1) % eval_step == 0:
logger.info('Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'.format(
epoch, step + 1, len(train_batches),
time.time() - start_time, tr_loss / nb_tr_steps))
save_model = False
if args.do_eval:
preds, result = evaluate(model=model,
device=device,
eval_dataloader=eval_dataloader,
eval_label_ids=eval_label_ids,
num_labels=num_labels,
batch_size=args.eval_batch_size,
seq_len=args.max_seq_length,
e2e_ngold=eval_nrel,
)
model.train()
result['global_step'] = global_step
result['epoch'] = epoch
result['learning_rate'] = lr
result['batch_size'] = args.train_batch_size
if (best_result is None) or (result[args.eval_metric] > best_result[args.eval_metric]):
best_result = result
logger.info("!!! Best dev %s (lr=%s, epoch=%d): %.2f" %
(args.eval_metric, str(lr), epoch, result[args.eval_metric] * 100.0))
save_trained_model(args.output_dir, model, tokenizer)
evaluation_results = {}
if args.do_eval:
logger.info(special_tokens)
if args.eval_test:
eval_dataset = test_dataset
eval_examples = test_examples
eval_features = convert_examples_to_features(
test_examples, label2id, args.max_seq_length, tokenizer, special_tokens, tokenized_id2description, train_id2examples=train_id2examples,
unused_tokens=not (args.add_new_tokens), use_knn=True)
eval_nrel = test_nrel
logger.info(special_tokens)
logger.info("***** Test *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_sub_idx = torch.tensor([f.sub_idx for f in eval_features], dtype=torch.long)
all_obj_idx = torch.tensor([f.obj_idx for f in eval_features], dtype=torch.long)
all_descriptions_input_ids = torch.tensor([f.descriptions_input_ids for f in eval_features],
dtype=torch.long)
all_descriptions_input_mask = torch.tensor([f.descriptions_input_mask for f in eval_features],
dtype=torch.long)
all_descriptions_type_ids = torch.tensor([f.descriptions_type_ids for f in eval_features],
dtype=torch.long)
all_descriptions_sub_idx = torch.tensor([f.descriptions_sub_idx for f in eval_features], dtype=torch.long)
all_descriptions_obj_idx = torch.tensor([f.descriptions_obj_idx for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids,
all_input_mask,
all_segment_ids,
all_label_ids,
all_sub_idx,
all_obj_idx,
all_descriptions_input_ids,
all_descriptions_input_mask,
all_descriptions_type_ids,
all_descriptions_sub_idx,
all_descriptions_obj_idx)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size)
eval_label_ids = all_label_ids
model = BEFRE.from_pretrained(args.output_dir)
model.to(device)
preds, result = evaluate(model=model,
device=device,
eval_dataloader=eval_dataloader,
eval_label_ids=eval_label_ids,
num_labels=num_labels,
batch_size=args.eval_batch_size,
seq_len=args.max_seq_length,
e2e_ngold=eval_nrel,
)
logger.info('*** Evaluation Results ***')
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
print_pred_json(eval_dataset, eval_examples, preds, id2label,
os.path.join(args.output_dir, args.prediction_file))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default=None, type=str, required=True)
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--eval_per_epoch", default=10, type=int,
help="How many times it evaluates on dev set per epoch")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--negative_label", default="no_relation", type=str)
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--train_file", default=None, type=str, help="The path of the training data.")
parser.add_argument("--train_mode", type=str, default='random_sorted',
choices=['random', 'sorted', 'random_sorted'])
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--eval_test", action="store_true", help="Whether to evaluate on final test set.")
parser.add_argument("--eval_with_gold", action="store_true",
help="Whether to evaluate the relation model with gold entities provided.")
parser.add_argument("--train_batch_size", default=32, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Total batch size for eval.")
parser.add_argument("--eval_metric", default="f1", type=str)
parser.add_argument("--learning_rate", default=None, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed', type=int, default=0,
help="random seed for initialization")
parser.add_argument("--bertadam", action="store_true", help="If bertadam, then set correct_bias = False")
parser.add_argument("--entity_output_dir", type=str, default=None,
help="The directory of the prediction files of the entity model")
parser.add_argument("--entity_predictions_dev", type=str, default="ent_pred_dev.json",
help="The entity prediction file of the dev set")
parser.add_argument("--entity_predictions_test", type=str, default="ent_pred_test.json",
help="The entity prediction file of the test set")
parser.add_argument("--prediction_file", type=str, default="predictions.json",
help="The prediction filename for the relation model")
parser.add_argument('--task', type=str, default=None, required=True,
choices=['ace04', 'ace05', 'scierc', 'chemprot_5'])
parser.add_argument('--context_window', type=int, default=0)
parser.add_argument('--add_new_tokens', action='store_true',
help="Whether to add new tokens as marker tokens instead of using [unusedX] tokens.")
parser.add_argument('--train_num_examples', type=int, default=None,
help="How many training instances to train")
parser.add_argument('--train_befre', action='store_true',
help="Train PURE of BEFRE.")
parser.add_argument('--drop_out', type=float, default=0.1,
help="hidden drop out rate.")
parser.add_argument('--multi_descriptions', action='store_true',
help="Use multi-descriptions or not.")
args = parser.parse_args()
main(args)