-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
executable file
·7917 lines (7070 loc) · 276 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
from typing import List
import csv
import time
import random
import collections
from collections import Counter, deque
import math
import functools
import itertools
from itertools import chain, product
import heapq
from sortedcontainers import SortedList
from my_lib.trie import Trie
from my_lib.union_find import UnionFind
import re
import bisect
from my_lib.TreeNode import TreeNode
class ListNode:
# Definition for singly-linked list.
def __init__(self, val=0, next=None):
self.val = val
self.next = next
def printList(self):
temp = self
while temp:
print(temp.val, end='')
temp = temp.next
print('')
class fileHandler:
def __init__(self):
self.timestr = time.strftime("%Y%m%d%H%M%S")
def writer(self):
self.timestr = time.strftime("%Y%m%d%H%M%S")
with open(self.timestr+'.csv', 'w', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow(['TimeDiff(us)', 'Cobid', 'Length', 'RTR', 'Data'])
def take_writer(self):
with open(self.timestr+'.csv', 'w', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow('hello')
class NumArray:
# Your NumArray object will be instantiated and called as such:
# obj = NumArray(nums)
# param_1 = obj.sumRange(left,right)
# TLE
# sum_range = collections.defaultdict(list)
# def __init__(self, nums: List[int]):
# n = len(nums)
# for i in range(n):
# for value in self.sum_range.values():
# value.append(value[-1] + nums[i])
# self.sum_range[i].append(nums[i])
# def sumRange(self, left: int, right: int) -> int:
# return self.sum_range[left][right - left]
part = [0]
def __init__(self, nums: List[int]):
# append additional element at the front of list
# prevent from checking if index out of range
for i in nums:
self.part.append(self.part[-1] + i)
def sumRange(self, left: int, right: int) -> int:
# sum to right - sum to (left - 1)
# left & right are inclusive
return self.part[right + 1] - self.part[left]
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
class Solution:
def __init__(self) -> None:
super().__init__()
def isIsomorphic(self, s: str, t: str) -> bool:
mappings = dict()
for i in range(len(s)):
if s[i] in mappings:
if mappings[s[i]] != t[i]:
return False
else:
if t[i] in mappings.values():
return False
mappings[s[i]] = t[i]
return True
def numDecodingsWithStar(self, s: str) -> int:
"""
dp[0] represents for ending with one digit number
dp[1] represents for total decodings when last digit is '1'
dp[2] represents for total decodings when last digit is '2'
"""
mod = 10 ** 9 + 7
dp, dp_new = [1, 0, 0], [0] * 3
for c in s:
if c == '*':
dp_new[0] = 9 * dp[0] + 9 * dp[1] + 6 * dp[2]
dp_new[1] = dp[0]
dp_new[2] = dp[0]
else:
dp_new[0] = (c != '0') * dp[0] + dp[1] + (int(c) < 7) * dp[2]
dp_new[1] = (c == '1') * dp[0]
dp_new[2] = (c == '2') * dp[0]
dp = [i % mod for i in dp_new]
return dp[0]
def lengthOfLIS(self, nums: List[int]) -> int:
# DFS, failed TLE
# n = len(nums)
# global res
# res = 0
# def search_next(index, curr_max, len):
# global res
# if index <= n:
# for i in range(index, n):
# if nums[i] > curr_max:
# search_next(i + 1, nums[i], len + 1)
# res = max(res, len)
# return
# search_next(0, - 10 ** 4 - 1, 0)
# return res
# classic dp problem
# dp[i] represents for LIS end with nums[i]
# time complexity = O(n^2)
# space complexity = O(n)
# n = len(nums)
# dp = [1] * n
# for i in range(n):
# for j in range(i + 1, n):
# if nums[i] < nums[j]:
# dp[j] = max(dp[j], dp[i] + 1)
# return max(dp)
# optimized dp algorithm
# time complexity = O(nlogn)
# space complexity = O(n)
# beats 80+% and 90+%
tails = list()
tails.append(nums[0])
for i in range(1, len(nums)):
if nums[i] > tails[-1]:
tails.append(nums[i])
else:
left, right = 0, len(tails) - 1
while left != right:
middle = (left + right) // 2
if tails[middle] < nums[i]:
left = middle + 1
else:
right = middle
tails[left] = min(tails[left], nums[i])
return len(tails)
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
# forgive me, this is find subsequence
# m, n = len(nums1), len(nums2)
# def find_next(i, j):
# if i == m or j == n:
# return 0
# if nums1[i] == nums2[j]:
# return 1 + find_next(i + 1, j + 1)
# return max(find_next(i, j + 1), find_next(i + 1, j))
# return find_next(0, 0)
# find subarray
m, n = len(nums1), len(nums2)
dp = [[0] * (n + 1) for i in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if nums1[i - 1] == nums2[j - 1]:
dp[i][j] = 1 + dp[i - 1][j - 1]
return max(max(x) for x in dp)
def findPeakElement(self, nums: List[int]) -> int:
# O(logn) time
# check middle element
# if it is a peak element, return its index
left, right = 0, len(nums) - 1
while left != right:
middle = (left + right) // 2
if middle - 1 >= 0 and nums[middle - 1] >= nums[middle]:
right = middle
elif middle + 1 < len(nums) and nums[middle + 1] >= nums[middle]:
left = middle + 1
else:
return middle
return left
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
ret, curr_four = list(), list()
nums.sort()
n = len(nums)
def find_next(index: int, sum: int) -> bool:
# reached end of nums
if len(curr_four) < 2:
for i in range(index + 1, n):
if i > index + 1 and nums[i] == nums[i - 1]:
continue
curr_four.append(nums[i])
find_next(i, sum - nums[i])
curr_four.pop()
else:
l, r = index + 1, n - 1
while l < r:
if nums[l] + nums[r] == sum:
ret.append(curr_four + [nums[l], nums[r]])
l += 1
r -= 1
while l < r and nums[l] == nums[l - 1]:
l += 1
while r > l and nums[r] == nums[r + 1]:
r -= 1
elif nums[l] + nums[r] < sum:
l += 1
else:
r -= 1
find_next(-1, target)
return ret
def triangleNumber(self, nums: List[int]) -> int:
nums.sort()
n = len(nums)
global ret
ret = 0
# we pick the first edge
# 从小到大轮询,后两条边需要做减法运算
# 每当找到临界点,将第二条边更新,同时需要再次从最后一个index开始找临界点
# for i in range(n):
# l, r = i + 1, n - 1
# while l < r:
# if nums[i] + nums[l] > nums[r]:
# print(i, l, r)
# ret += r - l
# l += 1
# r = n - 1
# else:
# r -= 1
# we pick the last edge
# 从大到小轮询,前两条边做加法运算
# 每当找到临界点,将第一条边后移,第二条变无需重新找,可从当前index继续往前找
for i in range(n - 1, 0, -1):
l, r = 0, i - 1
while l < r:
if nums[l] + nums[r] > nums[i]:
ret += r - l
r -= 1
else:
l += 1
return ret
def reverseKGroup(self, head: ListNode, k: int) -> ListNode:
# python pointer
current = head
next = None
prev = None
count = 0
# Reverse first k nodes of the linked list
while current and count < k:
next, current.next, prev = current.next, prev, current
current = next
count += 1
# next is now a pointer to (k+1)th node
# recursively call for the list starting
# from current. And make rest of the list as
# next of first node
if next is not None:
head.next = self.reverseKGroup(next, k)
# prev is new head of the input list
return prev
def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
# accepted
# global ancester
# ancester = None
# def find_index(node: TreeNode):
# global ancester
# ret = [False, False]
# if ancester:
# return ret
# ret[0] = True if node == p else False
# ret[1] = True if node == q else False
# if node and not all(i for i in ret):
# ret_left = find_index(node.left)
# ret_right = find_index(node.right)
# ret[0] |= ret_left[0] | ret_right[0]
# ret[1] |= ret_left[1] | ret_right[1]
# print(f'{node.val if node else None}: {ret}')
# if all(i for i in ret):
# ancester = node
# return ret
# find_index(root)
# return ancester
# we realize that this is a binary search tree
# which obey the rule: left.val < node.val < right.val
def find_ancester(node: TreeNode, p_: int, q_: int):
if node.val > p_ and node.val > q_:
return find_ancester(node.left, p_, q_)
if node.val < p_ and node.val < q_:
return find_ancester(node.right, p_, q_)
return node
return find_ancester(root, p.val, q.val)
class shuffle:
def __init__(self, nums: List[int]):
self.origin = nums.copy()
self.sf = nums
def reset(self) -> List[int]:
"""
Resets the array to its original configuration and return it.
"""
return self.origin
# random sort key
# sorted(self.nums, key = lambda _: random.random())
def shuffle(self) -> List[int]:
"""
Returns a random shuffling of the array.
"""
random.shuffle(self.sf)
return self.sf
def pushDominoes(self, dominoes: str) -> str:
for i in range(len(dominoes)):
pass
return dominoes
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
# find middle node and put it to root
# loop until all node are set
def subtree(left: int, right: int) -> TreeNode:
if right <= left:
return None
middle = left + (right - left) // 2
ret = TreeNode(nums[middle])
ret.left = subtree(left, middle)
ret.right = subtree(middle + 1, right)
return ret
return subtree(0, len(nums))
def threeSumClosest(self, nums: List[int], target: int) -> int:
# DFS
# nums.sort()
# ret = sum(nums[:3])
# sums = 0
# for i in range(len(nums)):
# if 3 * nums[i] >= ret and ret >= target:
# break
# sums = nums[i]
# for j in range(i + 1, len(nums)):
# if sums + 2 * nums[j] >= ret and ret >= target:
# break
# sums += nums[j]
# for k in range(j + 1, len(nums)):
# if sums + nums[k] >= ret and ret >= target:
# break
# sums += nums[k]
# if abs(sums - target) < abs(ret - target):
# ret = sums
# if ret == target:
# return ret
# sums -= nums[k]
# sums -= nums[j]
# sums -= nums[i]
# return ret
# more efficient way
nums.sort()
ret = sum(nums[:3])
n = len(nums)
for i in range(len(nums) - 2):
if i > 0 and nums[i] == nums[i - 1]:
continue
l, r = i + 1, n - 1
ls, rs = nums[i] + nums[l] + \
nums[l + 1], nums[i] + nums[r] + nums[r - 1]
if ls > target:
r = l + 1
elif rs < target:
l = r - 1
while l < r:
sums = nums[i] + nums[l] + nums[r]
if abs(sums - target) < abs(ret - target):
ret = sums
if sums == target:
return sums
elif sums < target:
l += 1
else:
r -= 1
return ret
def twoSum(self, nums: List[int], target: int) -> List[int]:
# time complexity: O(n)
visited = dict()
for i in range(len(nums)):
if target - nums[i] in visited:
return [visited[target - nums[i]], i]
elif nums[i] not in visited:
visited[nums[i]] = i
return [0, 0]
def largestIsland(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
surroundings = [[-1, 0], [0, -1]]
# key: str formed by two indices
# value: island index, can be used to access island list
find_island = dict()
island = list()
for i in range(m):
for j in range(n):
if grid[i][j]:
# extend island
temp = set()
for sur in surroundings:
newi, newj = i + sur[0], j + sur[1]
if f'{newi} {newj}' in find_island:
temp.add(find_island[f'{newi} {newj}'])
temp = list(temp)
if not temp:
# new island
find_island[f'{i} {j}'] = len(island)
island.append(1)
else:
# extend exist island
find_island[f'{i} {j}'] = temp[0]
island[temp[0]] += 1
# merge other island to temp[0]
for isl in temp[1:]:
for key, value in find_island.items():
if value == isl:
find_island[key] = temp[0]
island[temp[0]] += island[isl]
ret = max(island) if island else 0
surroundings = [[-1, 0], [1, 0], [0, -1], [0, 1]]
for i in range(m):
for j in range(n):
if not grid[i][j]:
area = set()
for sur in surroundings:
newi, newj = i + sur[0], j + sur[1]
if f'{newi} {newj}' in find_island:
area.add(find_island[f'{newi} {newj}'])
ret = max(ret, sum(island[k] for k in area) + 1)
return ret
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
# DFS
# subset, not list, no order
n = len(nums)
ret = set()
global subset
subset = ''
def extend(index: int):
global subset
if index == n:
return
for i in range(index, n):
temp = len(f' {nums[i]}')
subset += f' {nums[i]}'
if subset not in ret:
ret.add(subset)
extend(i + 1)
subset = subset[:(0 - temp)]
ret.add(subset)
nums.sort()
extend(0)
ret_list = list()
for i in ret:
ret_list.append(list(map(int, i.split(' ')[1:])))
return ret_list
def powerset(self, s):
x = len(s)
masks = [1 << i for i in range(x)]
for i in range(1 << x):
yield [ss for mask, ss in zip(masks, s) if i & mask]
def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]:
ret = []
def find_next(node: TreeNode, path: List[int], curr_sum: int):
temp = path.copy()
temp.append(node.val)
curr_sum += node.val
if not node.left and not node.right:
# leaf
if curr_sum == targetSum:
ret.append(temp)
return
if node.left:
find_next(node.left, temp, curr_sum)
if node.right:
find_next(node.right, temp, curr_sum)
if root:
find_next(root, [], 0)
return ret
def stoneGame(self, piles: List[int]) -> bool:
# dp[i, j] => [first player point, second player point]
# represents for a game with piles[i, j + 1]
n = len(piles)
dp = [[[0] * 2 for i in range(n)] for i in range(n)]
for i in range(n):
dp[i][i][0] = piles[i]
for step in range(1, n):
for i in range(n):
j = i + step
if j >= n:
continue
if dp[i + 1][j][1] + piles[i] > dp[i][j - 1][1] + piles[j]:
# take first
dp[i][j] = [dp[i + 1][j][1] + piles[i], dp[i + 1][j][0]]
else:
# take last
dp[i][j] = [dp[i][j - 1][1] + piles[j], dp[i][j - 1][0]]
# for i in range(n):
# print(dp[i])
return dp[0][n - 1][0] > dp[0][n - 1][1]
def matrixRankTransform(self, A):
n, m = len(A), len(A[0])
rank = [0] * (m + n)
d = collections.defaultdict(list)
for i in range(n):
for j in range(m):
d[A[i][j]].append([i, j])
def find(i):
if p[i] != i:
p[i] = find(p[i])
return p[i]
for a in sorted(d):
p = range(m + n)
rank2 = rank[:]
for i, j in d[a]:
i, j = find(i), find(j + n)
p[i] = j
rank2[j] = max(rank2[i], rank2[j])
for i, j in d[a]:
rank[i] = rank[j + n] = A[i][j] = rank2[find(i)] + 1
return A
def matrixRankTransform(self, matrix: List[List[int]]) -> List[List[int]]:
temp = collections.defaultdict(list)
m, n = len(matrix), len(matrix[0])
rank = [0] * (m + n) # confused
for i in range(m):
for j in range(n):
temp[matrix[i][j]].append([i, j])
print(temp.items())
# loop with sorted keys
for i in sorted(temp):
pass
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
# beats 98% in time
anagram = collections.defaultdict(list)
for s in strs:
anagram[''.join(sorted(s))].append(s)
return list(anagram.values())
def canReorderDoubled(self, arr: List[int]) -> bool:
# count = collections.defaultdict(int)
# for i in arr:
# count[i] += 1
# arr.sort(key=functools.cmp_to_key(lambda x, y: 1 if abs(x) > abs(y) else -1))
# for i in arr:
# if count[i] == 0:
# continue
# if count[i * 2] == 0:
# return False
# count[i] -= 1
# count[i * 2] -= 1
# return sum(list(count.values())) == 0
count = collections.Counter(arr)
for key in sorted(count, key=abs):
if count[key] > count[2 * key]:
return False
count[2 * key] -= count[key]
return True
def minWindow(self, s: str, t: str) -> str:
# sliding windows
left, right = 0, 1
ret, exist = s, False
count = collections.Counter(t)
while right <= len(s):
if s[right - 1] in count:
count[s[right - 1]] -= 1
if all(i <= 0 for i in count.values()):
exist = True
# contain all chars, start move left cursor
while True:
if len(ret) > (right - left):
ret = s[left:right]
if s[left] in count:
count[s[left]] += 1
left += 1
if not all(i <= 0 for i in count.values()):
break
right += 1
return ret if exist else ""
def goodNodes(self, root: TreeNode) -> int:
global ret
# DFS
def find_path(node: TreeNode, path: List):
global ret
# node is a leaf
if node.val >= (max(path) if path else node.val):
ret += 1
if node.left:
path.append(node.val)
find_path(node.left, path)
path.pop()
if node.right:
path.append(node.val)
find_path(node.right, path)
path.pop()
ret = 0
find_path(root, [])
return ret
def numDecodings(self, s: str) -> int:
"""
dp[0] represents for ending with one-digit number
dp[1] represents for total decodings when last digit is '1'
dp[2] represents for total decodings when last digit is '2'
dp[3] represents for ending with two-digit number
"""
dp, dp_new = [1, 0, 0, 0], [0] * 4
for i in map(int, s):
if i == 0:
dp_new = [0, 0, 0, dp[1] + dp[2]]
elif i == 1:
dp_new = [dp[0] + dp[3], dp[0] + dp[3], 0, dp[1] + dp[2]]
elif i == 2:
dp_new = [dp[0] + dp[3], 0, dp[0] + dp[3], dp[1] + dp[2]]
elif i in range(3, 7):
dp_new = [dp[0] + dp[3], 0, 0, dp[1] + dp[2]]
else:
dp_new = [dp[0] + dp[3], 0, 0, dp[1]]
if sum(dp) == 0:
return 0
dp = dp_new
return dp[0] + dp[3]
def maxProduct(self, root: TreeNode) -> int:
sum_set = set()
def sum_tree(node: TreeNode):
if node:
ret = node.val + sum_tree(node.left) + sum_tree(node.right)
sum_set.add(ret)
return ret
else:
return 0
sum_node = sum_tree(root)
MOD = 10 ** 9 + 7
return max([(sum_node - i) * i for i in sum_set]) % MOD
def isValidSudoku(self, board: List[List[str]]) -> bool:
# A Sudoku board (partially filled) could be valid but is not necessarily solvable
count = collections.defaultdict(set)
# key: r1 - r9, c1 - c9, s1 - s9
for i in range(9):
for j in range(9):
if board[i][j] == '.':
continue
if board[i][j] in count[f'r{i}'] or board[i][j] in count[f'c{j}'] or board[i][j] in count[f's{i // 3 * 3 + j // 3}']:
return False
count[f'r{i}'].add(board[i][j])
count[f'c{j}'].add(board[i][j])
count[f's{i // 3 * 3 + j // 3}'].add(board[i][j])
return True
def solveSudoku(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
count = collections.defaultdict(set)
# key: r1 - r9, c1 - c9, s1 - s9
for i in range(9):
for j in range(9):
if board[i][j] == '.':
continue
count[f'r{i}'].add(board[i][j])
count[f'c{j}'].add(board[i][j])
count[f's{i // 3 * 3 + j // 3}'].add(board[i][j])
# traverse from top-left to bottom-right
def solve_next(i: int, j: int):
while i < 9:
# locate next item to be solved
if board[i][j] != '.':
j += 1
if j == 9:
i += 1
j = 0
else:
# DFS
for element in map(str, range(1, 10)):
if element in count[f'r{i}'] or element in count[f'c{j}'] or element in count[f's{i // 3 * 3 + j // 3}']:
continue
else:
board[i][j] = element
count[f'r{i}'].add(element)
count[f'c{j}'].add(element)
count[f's{i // 3 * 3 + j // 3}'].add(element)
if solve_next(i, j):
return True
board[i][j] = '.'
count[f'r{i}'].remove(element)
count[f'c{j}'].remove(element)
count[f's{i // 3 * 3 + j // 3}'].remove(element)
return False
return True
solve_next(0, 0)
return board
def rectangleArea(self, rectangles: List[List[int]]) -> int:
# sort all x coordinates
xs = sorted(
set([x for x1, y1, x2, y2 in rectangles for x in [x1, x2]]))
# ☆☆☆ refer to 12# in README.md ☆☆☆
# sorted(set([x for x1, y1, x2, y2 in rectangles for x in [x1, x2]]))
# is equivalent to the following codes:
# temp = []
# for x1, y1, x2, y2 in rectangles:
# for x in [x1, x2]:
# temp.append(x)
# xs = sorted(set(temp))
# form a dict which key is x_coordinate and value is the index
x_i = {value: index for index, value in enumerate(xs)}
L = [] # empty list
for x1, y1, x2, y2 in rectangles:
L.append([y1, x1, x2, 1]) # bottom edge
L.append([y2, x1, x2, -1]) # top edge
# these two lines form a rectangle
L.sort() # first key is y coordinate, second key is x1, and then x2
cur_y = cur_x_sum = area = 0
count = [0] * len(x_i)
for y, x1, x2, signal in L:
area += (y - cur_y) * cur_x_sum
cur_y = y # current y level
for i in range(x_i[x1], x_i[x2]):
count[i] += signal
# signal = 1, start from here, add 1 to all x_range
# signal = -1, end here, minus 1 from all x_range
"""
ex.
input = [[0,0,2,2],[1,1,2,4]]
count = [1, 1, 0] y = 0
↓ [1, 2, 0] y = 1 there is an overlap cell | area += (y: 1 - curr_y: 0) * curr_x_sum: 2
↓ [0, 1, 0] y = 2 area += (y: 2 - curr_y: 1) * curr_x_sum: 2
↓ [0, 0, 0] y = 4 area += (y: 4 - curr_y: 2) * curr_x_sum: 1
"""
cur_x_sum = sum(x2 - x1 if c else 0 for x1, x2,
c in zip(xs, xs[1:], count))
return area % (10 ** 9 + 7)
def findGCD(self, nums: List[int]) -> int:
min_, max_ = min(nums), max(nums)
while True:
max_ = max_ % min_
if max_ == 0:
return min_
min_, max_ = max_, min_
def findDifferentBinaryString(self, nums: List[str]) -> str:
n = len(nums)
nums = sorted(set(nums))
count = 0
for i in nums:
if int(i, 2) != count:
ret = str(bin(count))[2:]
while len(ret) < n:
ret = '0' + ret
return ret
count += 1
ret = str(bin(count))[2:]
while len(ret) < n:
ret = '0' + ret
return ret
def minimizeTheDifference(self, mat: List[List[int]], target: int) -> int:
# DFS?
# m = len(mat)
# for row in mat:
# row.sort()
# init = sum([i[0] for i in mat])
# if init >= target:
# return abs(init - target)
# global diff
# diff = abs(init - target)
# def find_next(row: int, cur_sum: int):
# global diff
# # print(row, cur_sum, diff)
# if cur_sum - target >= diff or diff == 0:
# return
# if row == m - 1:
# # last row
# for i in mat[row]:
# diff = min(diff, abs((cur_sum + i) - target))
# else:
# for i in mat[row]:
# find_next(row + 1, cur_sum + i)
# find_next(0, 0)
# return diff
nums = {0}
for row in mat:
nums = {x + i for x in row for i in nums} # set
return min(abs(target - x) for x in nums)
def recoverArray(self, n: int, sums: List[int]) -> List[int]:
total = sum(sums)
n = len(sums)
sum_arr = total / (n / 2)
def findTarget(self, root: TreeNode, k: int) -> bool:
global node_val
node_val = set()
def find_next(node: TreeNode):
global node_val
if node:
if k - node.val in node_val:
return True
else:
node_val.add(node.val)
return find_next(node.left) or find_next(node.right)
return False
return find_next(root)
def complexNumberMultiply(self, num1: str, num2: str) -> str:
num1_part = [int(i) for i in num1[:-1].split('+')]
num2_part = [int(i) for i in num2[:-1].split('+')]
ret_part = [num1_part[0] * num2_part[0] - num1_part[1] * num2_part[1],
num1_part[0] * num2_part[1] + num1_part[1] * num2_part[0]]
return f'{str(ret_part[0])}+{str(ret_part[1])}i'
def judgeSquareSum(self, c: int) -> bool:
# 0 <= c <= 2 ** 31 - 1
# def perfect_sqrt(i):
# return math.sqrt(i).is_integer()
# return any(perfect_sqrt(c - a ** 2) for a in range(math.floor(math.sqrt(c / 2)) + 1))
mid = math.floor(math.sqrt(c / 2))
base = 0
while base <= mid:
if math.sqrt(c - base ** 2).is_integer():
return True
base += 1
return False
def isValidSerialization(self, preorder: str) -> bool:
# node = preorder.split(',')
# global index
# index = 0
# def traverse():
# global index
# if index >= len(node) or node[index] == '#':
# return
# else:
# # left child
# index += 1
# traverse()
# # right child
# index += 1
# traverse()
# traverse()
# return index == len(node) - 1
# use stack
node = []
for i in preorder.split(','):
while i == '#' and node and node[-1] == '#':
# find two contiguous '#'
# pop them out
node.pop()
# pop their parent node as well
if not node:
return False
node.pop()
node.append(i)
return len(node) == 1 and node[0] == '#'
def findLUSlength(self, strs: List[str]) -> int:
# brute force, accepted
strs.sort(key=functools.cmp_to_key(
lambda x, y: 1 if len(x) < len(y) else -1))
checked = set()
def is_subsequence(a: str, b: str):
index_a, index_b = 0, 0
while index_a < len(a) and index_b < len(b):
if a[index_a] == b[index_b]:
index_a += 1
index_b += 1
return index_a == len(a)
for i in range(len(strs)):
"""
- why do we only care about the whole word, rather than check all subsequences of it?
- if the whole word is a common subsequence of another word,
then all subsequences of it are common subs of that word as well.
"""
# check whole word
if strs[i] not in checked:
checked.add(strs[i])
if all(not is_subsequence(strs[i], strs[j]) for j in range(len(strs)) if i != j):
return len(strs[i])
return -1
def minPatches(self, nums: List[int], n: int) -> int:
nums.sort()
cover, count, i = 1, 0, 0
while n >= cover:
if i < len(nums) and nums[i] <= cover:
cover += nums[i]
i += 1
else:
count += 1
cover *= 2
return count
def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int:
if not ops:
return m * n
# ops_x = sorted(ops)
# ops_y = sorted(ops, key=functools.cmp_to_key(lambda a, b: 1 if a[1] > b[1] or (a[1] == b[1] and a[0] > b[0]) else -1))
# return ops_x[0][0] * ops_y[0][1]
return min(x for x, y in ops) * min(y for x, y in ops)
def minimumDifference(self, nums: List[int], k: int) -> int:
nums.sort()
return min((nums[i + k - 1] - nums[i]) for i in range(len(nums) + 1 - k))
def kthLargestNumber(self, nums: List[str], k: int) -> str:
return str(tuple(sorted(map(int, nums), reverse=True))[k - 1])
def minSessions(self, tasks: List[int], sessionTime: int) -> int:
tasks.sort(reverse=True)
session = list()
global ret
ret = len(tasks)
def find_next(index: int):
global ret
if index == len(tasks) or any(se >= sum(tasks[index:]) for se in session):
ret = min(len(session), ret)
return
i = tasks[index]
for s in range(len(session)):
if session[s] >= i:
session[s] -= i
find_next(index + 1)
session[s] += i
s += 1
session.append(sessionTime - i)