-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clm.py
300 lines (267 loc) · 12.9 KB
/
train_clm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import sys
sys.dont_write_bytecode = True
import os
import math
import logging
from argparse import Namespace
import evaluate
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from DG_dataset import DGDataset
logger = logging.getLogger(__name__)
def main(args):
data_args = Namespace(
model_name_or_path=args.model_name_or_path,
max_length=args.max_length,
pad_to_max_length=args.pad_to_max_length,
ignore_pad_token_for_loss=True,
max_train_samples=args.max_train_samples,
max_eval_samples=args.max_eval_samples,
max_predict_samples=args.max_predict_samples,
preprocessing_num_workers=args.preprocessing_num_workers,
overwrite_cache=args.overwrite_cache,
output_dir=args.output_dir,
num_beams=args.num_beams,
block_size=args.block_size,
)
training_args = TrainingArguments(
output_dir=data_args.output_dir,
do_train=args.do_train,
do_eval=args.do_eval,
do_predict=args.do_predict,
seed=args.seed,
evaluation_strategy="epoch",
metric_for_best_model="eval_accuracy",
greater_is_better=True, # smaller eval loss is better
save_total_limit=2, # save 2 checkpoints (best and last)
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
num_train_epochs=args.num_train_epochs,
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Blended Skill Talk
all_datasets = load_dataset(args.dataset)
# Tokenizer and model
config = AutoConfig.from_pretrained(data_args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(data_args.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(data_args.model_name_or_path, config=config)
max_length = data_args.max_length
padding = "max_length" if data_args.pad_to_max_length else False
print("max length: {}, model max length: {}".format(max_length, tokenizer.model_max_length))
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Add special tokens
tokenizer.add_special_tokens({'pad_token': '<PAD>'})
tokenizer.add_special_tokens({'mask_token': '<MASK>'})
model.resize_token_embeddings(len(tokenizer))
# Data processing
dg = DGDataset(
dataset=args.dataset,
task='clm',
tokenizer=tokenizer,
max_source_length=max_length,
max_target_length=max_length,
padding=padding,
ignore_pad_token_for_loss=data_args.ignore_pad_token_for_loss,
preprocessing_num_workers=args.preprocessing_num_workers,
overwrite_cache=args.overwrite_cache,
)
# Tokenize train, eval, test dataset
if training_args.do_train:
train_dataset = all_datasets['train']
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = dg.preprocess(train_dataset)
print("train dataset: ", train_dataset)
if training_args.do_eval:
eval_dataset = all_datasets['validation']
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
eval_dataset = dg.preprocess(eval_dataset)
print("validation dataset: ", eval_dataset)
if training_args.do_predict and 'test' in all_datasets:
predict_dataset = all_datasets['test']
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = dg.preprocess(predict_dataset)
print("test dataset: ", predict_dataset)
# Data collator
data_collator = default_data_collator
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.do_eval else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='random seed for initialization')
parser.add_argument('--model_name_or_path',
type=str,
default='microsoft/DialoGPT-small',
choices=['microsoft/DialoGPT-small', 'gpt2'],
help='The model checkpoint for weights initialization.')
parser.add_argument("--dataset", "-d", type=str,
default="blended_skill_talk",
choices=[
"blended_skill_talk",
"conv_ai_2",
"empathetic_dialogues",
"AlekseyKorshuk/persona-chat",
],
help='The dataset to use for training.')
parser.add_argument('--output_dir',
type=str,
default='results/dialogpt',
help='The output directory where the model predictions and checkpoints will be written.')
parser.add_argument('--num_train_epochs',
type=int,
default=50,
help='Total number of training epochs to perform.')
parser.add_argument('--per_device_train_batch_size',
type=int,
default=10,
help='Batch size per GPU/CPU for training.')
parser.add_argument('--per_device_eval_batch_size',
type=int,
default=20,
help='Batch size per GPU/CPU for evaluation.')
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=20,
help='Number of updates steps to accumulate before performing a backward/update pass.')
parser.add_argument('--do_train',
action='store_true',
help='Whether to run training.')
parser.add_argument('--do_eval',
action='store_true',
help='Whether to run eval on the dev set.')
parser.add_argument('--do_predict',
action='store_true',
help='Whether to run predictions on the test set.')
parser.add_argument('--max_train_samples',
type=int,
default=None,
help='For debugging purposes or quicker training, truncate the number of training examples to this.')
parser.add_argument('--max_eval_samples',
type=int,
default=None,
help='For debugging purposes or quicker training, truncate the number of evaluation examples to this.')
parser.add_argument('--max_predict_samples',
type=int,
default=None,
help='For debugging purposes or quicker training, truncate the number of prediction examples to this.')
parser.add_argument('--max_length',
type=int,
default=512,
help='The maximum total sequence length for target text after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.')
parser.add_argument('--pad_to_max_length',
action='store_true',
help='Whether to pad all samples to model maximum sentence length.')
parser.add_argument('--block_size',
type=int,
default=None,
help='Optional input sequence length after tokenization. The training dataset will be truncated in block of this size for training.')
parser.add_argument('--num_beams',
type=int,
default=4,
help='Number of beams to use for evaluation. This argument will be passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.')
parser.add_argument('--overwrite_cache',
action='store_true',
help='Overwrite the cached training and evaluation sets')
parser.add_argument('--preprocessing_num_workers',
type=int,
default=None,
help='The number of processes to use for the preprocessing.')
args = parser.parse_args()
main(args)