-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtooner_lighting.cginc
2551 lines (2347 loc) · 87.9 KB
/
tooner_lighting.cginc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "UnityCG.cginc"
#include "AutoLight.cginc"
#include "UnityPBSLighting.cginc"
#include "audiolink.cginc"
#include "aurora.cginc"
#include "clones.cginc"
#include "cnlohr.cginc"
#include "disinfo.cginc"
#include "downstairs_02.cginc"
#include "eyes.cginc"
#include "fog.cginc"
#include "gerstner.cginc"
#include "globals.cginc"
#include "halos.cginc"
#include "interpolators.cginc"
#include "iq_sdf.cginc"
#include "macros.cginc"
#include "math.cginc"
#include "motion.cginc"
#include "oklab.cginc"
#include "pbr.cginc"
#include "pbr_overlay.cginc"
#include "poi.cginc"
#include "shear_math.cginc"
#include "tone.cginc"
#include "tooner_scroll.cginc"
#include "trochoid_math.cginc"
#include "zwrite_abomination.cginc"
#ifndef TOONER_LIGHTING
#define TOONER_LIGHTING
float3 Shade4PointLightsWrapped(
float4 lightPosX, float4 lightPosY, float4 lightPosZ,
float3 lightColor0, float3 lightColor1, float3 lightColor2, float3 lightColor3,
float4 lightAttenSq,
float3 pos, float3 normal,
float wrapFactor)
{
float4 toLightX = lightPosX - pos.x;
float4 toLightY = lightPosY - pos.y;
float4 toLightZ = lightPosZ - pos.z;
float4 lengthSq = 0;
lengthSq += toLightX * toLightX;
lengthSq += toLightY * toLightY;
lengthSq += toLightZ * toLightZ;
float4 ndotl = 0;
ndotl += toLightX * normal.x;
ndotl += toLightY * normal.y;
ndotl += toLightZ * normal.z;
// Apply wrapped lighting correction
float4 wrapped = wrapNoL(ndotl, wrapFactor);
float4 corr = rsqrt(lengthSq);
ndotl = max(0, wrapped) * corr;
float4 atten = 1.0 / (1.0 + lengthSq * lightAttenSq);
float4 diff = ndotl * atten;
return diff.x * lightColor0 +
diff.y * lightColor1 +
diff.z * lightColor2 +
diff.w * lightColor3;
}
void getVertexLightColor(inout v2f i)
{
#if defined(VERTEXLIGHT_ON)
float3 view_dir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos);
uint normals_mode = round(_Mesh_Normals_Mode);
bool flat = (normals_mode == 0);
float3 flat_normal = normalize(
(1.0 / _Flatten_Mesh_Normals_Str) * i.normal +
_Flatten_Mesh_Normals_Str * view_dir);
i.vertexLightColor = Shade4PointLightsWrapped(
unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
unity_LightColor[0].rgb,
unity_LightColor[1].rgb,
unity_LightColor[2].rgb,
unity_LightColor[3].rgb,
unity_4LightAtten0, i.worldPos, flat ? flat_normal : i.normal,
1
);
#endif
}
v2f vert(appdata v)
{
#if defined(_DISCARD)
if (_Discard_Enable_Dynamic) {
return (v2f) (0.0 / 0.0);
}
#endif
v2f o;
UNITY_INITIALIZE_OUTPUT(v2f, o);
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
//UNITY_TRANSFER_VERTEX_OUTPUT_STEREO(v, o);
#if defined(_GIMMICK_BOX_DISCARD)
if (_Gimmick_Box_Discard_Enable_Static) {
float3 p = getCenterCamPos();
float3 c1 = _Gimmick_Box_Discard_Corner_1;
float3 c2 = _Gimmick_Box_Discard_Corner_2;
bool inside = (p.x >= c1.x && p.x <= c2.x &&
p.y >= c1.y && p.y <= c2.y &&
p.z >= c1.z && p.z <= c2.z);
if (_Gimmick_Box_Discard_Invert && !inside ||
!_Gimmick_Box_Discard_Invert && inside) {
return (v2f) (0.0 / 0.0);
}
}
#endif
o.centerCamPos = getCenterCamPos();
#if defined(_GIMMICK_QUANTIZE_LOCATION)
if (_Gimmick_Quantize_Location_Enable_Dynamic) {
float q = _Gimmick_Quantize_Location_Precision /
_Gimmick_Quantize_Location_Multiplier;
#if defined(_GIMMICK_QUANTIZE_LOCATION_AUDIOLINK)
// christ what a fucking variable name
if (_Gimmick_Quantize_Location_Audiolink_Enable_Dynamic &&
AudioLinkIsAvailable()) {
// x is lowest frequency, w is highest
float4 bands = AudioLinkData(ALPASS_AUDIOLINK).xyzw;
float e = q *= 1 + (bands.x + bands.y * 0.5) *
_Gimmick_Quantize_Location_Audiolink_Strength * 0.1;
}
#endif
float3 v_new0 = floor(v.vertex * q) / q;
float3 d = v_new0 - v.vertex;
float3 v_new1 = v.vertex - d;
bool flip_dir = (sign(dot(d, v.normal)) !=
sign(_Gimmick_Quantize_Location_Direction));
float3 v_q = lerp(v_new0, v_new1, flip_dir);
float mask = _Gimmick_Quantize_Location_Mask.SampleLevel(linear_repeat_s,
v.uv0.xy, /*lod=*/0);
v.vertex.xyz = lerp(v.vertex.xyz, v_q, mask);
}
#endif
#if defined(_TROCHOID)
{
o.objPos_pre_trochoid = v.vertex.xyz;
v.vertex.xyz = cart_to_troch_map(v.vertex.xyz);
}
#endif // _TROCHOID
#if defined(_GIMMICK_ZWRITE_ABOMINATION)
v.vertex.xyz *= _Gimmick_ZWrite_Abomination_Vertex_Expansion_Factor;
#endif
#if defined(_FACE_ME_WORLD_Y)
[branch]
if (_FaceMeWorldY_Enable_Dynamic) {
float3 object_center = mul(unity_ObjectToWorld, float4(0, 0, 0, 1));
// Get forward axis of object coordinate system, i.e. the orientation of
// the hip bone.
// Then project it onto the xz plane.
float3 forward_axis = mul(unity_ObjectToWorld, float3(0, 0, 1));
forward_axis.y = 0;
forward_axis = normalize(forward_axis);
float4 worldPos = mul(unity_ObjectToWorld, v.vertex);
float3 rd = normalize((worldPos - object_center) - getCenterCamPos());
// We apply a factor of -1 to shift the result forward by a phase shift of pi.
float cos_t = -dot(normalize(rd.xz), forward_axis.xz);
// We want to get sin(t) using the identity:
// || a x b || = || a || || b || sin(t)
// For normal vectors, this simplifies to:
// || a x b || = sin(t)
// The issue is that the norm operator loses the sign.
// We can estimate the sign by assuming that `rd` and `forward_axis` are on
// the xz plane.
// If that's the case, then the cross product is necessarily constrained to
// the y axis.
float sin_t_sign = sign(cross(rd, forward_axis).y);
// Here we use the identity:
// sin(t) = sqrt(1 - cos(t)^2)
// We simply apply the sign correction `sin_t_sign` to the result.
// We then invert it, since the goal is not to amplify the rotation, but
// to negate it.
// Finally, we add a phase correction to make the abomination face us.
float sin_t = -sqrt(1 - cos_t * cos_t) * sin_t_sign;
float2x2 face_me_rot = float2x2(cos_t, -sin_t, sin_t, cos_t);
float2x2 face_me_rot_inv = float2x2(cos_t, sin_t, -sin_t, cos_t);
worldPos.xz = mul(face_me_rot, (worldPos.xz - object_center.xz)) + object_center.xz;
v.vertex = mul(unity_WorldToObject, worldPos);
float3 world_normal = UnityObjectToWorldNormal(v.normal);
world_normal.xz = mul(face_me_rot_inv, world_normal.xz);
v.normal = normalize(mul(unity_WorldToObject, world_normal));
}
#endif
#if !defined(_SCROLL) && defined(_GIMMICK_SPHERIZE_LOCATION)
if (_Gimmick_Spherize_Location_Enable_Dynamic) {
float3 p = v.vertex.xyz;
float r = _Gimmick_Spherize_Location_Radius;
float s = _Gimmick_Spherize_Location_Strength;
float l = length(p);
p *= lerp(1, (r / l), s);
v.vertex.xyz = p;
}
#endif
#if !defined(_SCROLL) && defined(_GIMMICK_SHEAR_LOCATION)
if (_Gimmick_Shear_Location_Enable_Dynamic) {
float3 p = v.vertex.xyz;
float3 sc = _Gimmick_Shear_Location_Strength.xyz;
float3x3 shear_matrix = float3x3(
sc.x, 0, 0,
0, sc.y, 0,
0, 0, sc.z);
p = mul(shear_matrix, p);
v.vertex.xyz = p;
}
#endif
#if defined(_GIMMICK_GERSTNER_WATER)
{
GerstnerParams p = getGerstnerParams();
v.vertex.xyz = gerstner_vert(v.vertex.xyz, p);
}
#endif
o.pos = UnityObjectToClipPos(v.vertex);
o.worldPos = mul(unity_ObjectToWorld, v.vertex);
o.objPos = v.vertex;
o.normal = UnityObjectToWorldNormal(v.normal);
o.tangent = float4(UnityObjectToWorldDir(v.tangent.xyz), v.tangent.w);
o.uv0 = v.uv0;
#if !defined(_OPTIMIZE_INTERPOLATORS)
o.uv1 = v.uv1;
#if defined(LIGHTMAP_ON)
o.uv2 = v.uv2 * unity_LightmapST.xy + unity_LightmapST.zw;
UNITY_TRANSFER_LIGHTING(o, v.uv2);
#else
o.uv2 = v.uv2;
o.uv3 = v.uv3;
o.uv4 = v.uv4;
o.uv5 = v.uv5;
o.uv6 = v.uv6;
o.uv7 = v.uv7;
#endif
#endif // _OPTIMIZE_INTERPOLATORS
#if defined(_MIRROR_UV_FLIP)
if (_Mirror_UV_Flip_Enable_Dynamic) {
bool in_mirror = isInMirror();
o.uv0.x = lerp(o.uv0.x, 1 - o.uv0.x, in_mirror);
#if !defined(_OPTIMIZE_INTERPOLATORS)
o.uv1.x = lerp(o.uv1.x, 1 - o.uv1.x, in_mirror);
o.uv2.x = lerp(o.uv2.x, 1 - o.uv2.x, in_mirror);
o.uv3.x = lerp(o.uv3.x, 1 - o.uv3.x, in_mirror);
o.uv4.x = lerp(o.uv4.x, 1 - o.uv4.x, in_mirror);
o.uv5.x = lerp(o.uv5.x, 1 - o.uv5.x, in_mirror);
o.uv6.x = lerp(o.uv6.x, 1 - o.uv6.x, in_mirror);
o.uv7.x = lerp(o.uv7.x, 1 - o.uv7.x, in_mirror);
#endif
}
#endif
#if defined(SHADOWS_SCREEN)
TRANSFER_SHADOW(o);
#endif
float2 suv = o.pos * float2(0.5, 0.5 * _ProjectionParams.x);
o.screenPos = TransformStereoScreenSpaceTex(suv + 0.5 * o.pos.w, o.pos.w);
o.grabPos = ComputeGrabScreenPos(o.pos);
getVertexLightColor(o);
UNITY_TRANSFER_FOG(o, o.pos);
return o;
}
// maxvertexcount == the number of vertices we create
#if defined(_CLONES)
[maxvertexcount(21)]
#else
[maxvertexcount(3)]
#endif
void geom(triangle v2f tri_in[3],
uint pid: SV_PrimitiveID,
inout TriangleStream<v2f> tri_out)
{
v2f v0 = tri_in[0];
v2f v1 = tri_in[1];
v2f v2 = tri_in[2];
float3 v0_objPos;
float3 v1_objPos;
float3 v2_objPos;
const float pid_rand = rand((int) pid);
float explode_phase = 0;
#if defined(_EXPLODE)
float3 n = normalize(cross(v1.worldPos - v0.worldPos, v2.worldPos - v0.worldPos));
float3 avg_pos;
float3 n0 = v0.normal;
float3 n1 = v1.normal;
float3 n2 = v2.normal;
explode_phase = _Explode_Phase;
explode_phase = smoothstep(0, 1, explode_phase);
explode_phase *= explode_phase;
explode_phase *= 4;
if (explode_phase > 1E-6) {
float3 axis = normalize(float3(
rand((int) ((v0.uv0.x + v0.uv0.y) * 1E9)) * 2 - 1,
rand((int) ((v1.uv0.x + v1.uv0.y) * 1E9)) * 2 - 1,
rand((int) ((v2.uv0.x + v2.uv0.y) * 1E9)) * 2 - 1));
float3 np = BlendNormals(n, axis * explode_phase);
v0.worldPos += np * explode_phase * pid_rand;
v1.worldPos += np * explode_phase * pid_rand;
v2.worldPos += np * explode_phase * pid_rand;
v0_objPos = mul(unity_WorldToObject, float4(v0.worldPos, 1));
v1_objPos = mul(unity_WorldToObject, float4(v1.worldPos, 1));
v2_objPos = mul(unity_WorldToObject, float4(v2.worldPos, 1));
float chrono = 0;
#if defined(_AUDIOLINK)
if (AudioLinkIsAvailable()) {
chrono = (AudioLinkDecodeDataAsUInt( ALPASS_CHRONOTENSITY + uint2( 2, 1 ) ) % 1000000) / 1000000.0;
}
#endif
v0.worldPos += n * explode_phase * sin(_Time[2] + length(v0_objPos)*6 + chrono) * .01 + chrono * n * explode_phase * .2;
v1.worldPos += n * explode_phase * sin(_Time[2] + length(v1_objPos)*6 + chrono) * .01 + chrono * n * explode_phase * .2;
v2.worldPos += n * explode_phase * sin(_Time[2] + length(v2_objPos)*6 + chrono) * .01 + chrono * n * explode_phase * .2;
avg_pos = (v0.worldPos + v1.worldPos + v2.worldPos) / 3;
v0.worldPos -= avg_pos;
v1.worldPos -= avg_pos;
v2.worldPos -= avg_pos;
v0.worldPos *= 1 + 2 * pid_rand;
v1.worldPos *= 1 + 2 * pid_rand;
v2.worldPos *= 1 + 2 * pid_rand;
float theta = explode_phase * 3.14159 * 4 + explode_phase * (sin(_Time[1] * (1 + pid_rand) / 2.0 + pid_rand) + cos(_Time[1] * (1 + pid_rand) / 6.1 + pid_rand) * 2) * pid_rand * 2;
float4 quat = get_quaternion(axis, theta);
v0.worldPos = rotate_vector(v0.worldPos, quat);
v1.worldPos = rotate_vector(v1.worldPos, quat);
v2.worldPos = rotate_vector(v2.worldPos, quat);
v0.worldPos += avg_pos;
v1.worldPos += avg_pos;
v2.worldPos += avg_pos;
n = normalize(cross(v1.worldPos - v0.worldPos, v2.worldPos - v0.worldPos));
v0.normal = n;
v1.normal = n;
v2.normal = n;
// Omit geometry that's too close when exploded.
/*
if (_Explode_Phase > .05 && length(v0.worldPos - _WorldSpaceCameraPos) < .2) {
return;
}
*/
v0_objPos = mul(unity_WorldToObject, float4(v0.worldPos, 1));
v1_objPos = mul(unity_WorldToObject, float4(v1.worldPos, 1));
v2_objPos = mul(unity_WorldToObject, float4(v2.worldPos, 1));
// Apply transformed worldPos to other coordinate systems.
if (_Explode_Phase > 1E-6) {
v0.pos = UnityObjectToClipPos(v0_objPos);
v1.pos = UnityObjectToClipPos(v1_objPos);
v2.pos = UnityObjectToClipPos(v2_objPos);
}
}
#endif // __EXPLODE
#if defined(_SCROLL)
{
float3 n = normalize(cross(v1.worldPos - v0.worldPos, v2.worldPos - v0.worldPos));
float3 avg_pos = (v0.worldPos + v1.worldPos + v2.worldPos) / 3;
v0.worldPos = applyScroll(v0.worldPos, n, avg_pos);
v1.worldPos = applyScroll(v1.worldPos, n, avg_pos);
v2.worldPos = applyScroll(v2.worldPos, n, avg_pos);
float3 v0_objPos = mul(unity_WorldToObject, float4(v0.worldPos, 1));
float3 v1_objPos = mul(unity_WorldToObject, float4(v1.worldPos, 1));
float3 v2_objPos = mul(unity_WorldToObject, float4(v2.worldPos, 1));
#if defined(_GIMMICK_SPHERIZE_LOCATION)
if (_Gimmick_Spherize_Location_Enable_Dynamic) {
float r = _Gimmick_Spherize_Location_Radius;
float s = _Gimmick_Spherize_Location_Strength;
float l0 = length(v0_objPos);
float l1 = length(v1_objPos);
float l2 = length(v2_objPos);
v0_objPos *= lerp(1, (r / l0), s);
v1_objPos *= lerp(1, (r / l1), s);
v2_objPos *= lerp(1, (r / l2), s);
}
#endif
#if defined(_GIMMICK_SHEAR_LOCATION)
if (_Gimmick_Shear_Location_Enable_Dynamic) {
v0_objPos = mul(float3x3(
_Gimmick_Shear_Location_Strength.x, 0, 0,
0, _Gimmick_Shear_Location_Strength.y, 0,
0, 0, _Gimmick_Shear_Location_Strength.z),
v0_objPos);
v1_objPos = mul(float3x3(
_Gimmick_Shear_Location_Strength.x, 0, 0,
0, _Gimmick_Shear_Location_Strength.y, 0,
0, 0, _Gimmick_Shear_Location_Strength.z),
v1_objPos);
v2_objPos = mul(float3x3(
_Gimmick_Shear_Location_Strength.x, 0, 0,
0, _Gimmick_Shear_Location_Strength.y, 0,
0, 0, _Gimmick_Shear_Location_Strength.z),
v2_objPos);
}
#endif
#if defined(_GIMMICK_SHEAR_LOCATION) || defined(_GIMMICK_SPHERIZE_LOCATION)
v0.worldPos.xyz = mul(unity_ObjectToWorld, v0_objPos);
v1.worldPos.xyz = mul(unity_ObjectToWorld, v1_objPos);
v2.worldPos.xyz = mul(unity_ObjectToWorld, v2_objPos);
#endif
v0.pos = UnityObjectToClipPos(v0_objPos);
v1.pos = UnityObjectToClipPos(v1_objPos);
v2.pos = UnityObjectToClipPos(v2_objPos);
}
#endif
#if defined(_CLONES)
v2f clone_verts[3] = {v0, v1, v2};
add_clones(clone_verts, tri_out, pid_rand, explode_phase);
#endif // _CLONES
// Output transformed geometry.
tri_out.Append(v0);
tri_out.Append(v1);
tri_out.Append(v2);
tri_out.RestartStrip();
}
#if defined(_LENS00)
#endif
#if defined(_RORSCHACH) || defined(_GLITTER) || defined(_RIM_LIGHTING0_GLITTER) || defined(_RIM_LIGHTING1_GLITTER) || defined(_RIM_LIGHTING2_GLITTER) || defined(_RIM_LIGHTING3_GLITTER)
struct RorschachPBR {
float4 albedo;
};
float rorschach_map_sdf(float3 p, float2 e, float3 period, float center_randomization, float speed)
{
float r = _Rorschach_Radius * min(period.x, min(period.y, period.z));
float st = sin(_Time[1] * speed * e.y * e.y + e.x * 3.14159265 * 2);
r *= st;
float3 o = float3(
(e.x - 0.5) * period.x,
(e.y - 0.5) * period.y,
0);
o *= center_randomization;
return distance_from_sphere(p + o, r);
}
float rorschach_map_dr(
float3 p,
float3 period,
float3 count,
float center_randomization,
float speed,
out float3 which
)
{
which = round(p / period);
// Direction to nearest neighboring cell.
float3 min_d = p - period * which;
float3 o = sign(min_d);
float d = 1E9;
float3 which_tmp = which;
for (uint xi = 0; xi < 4; xi++)
for (uint yi = 0; yi < 4; yi++)
{
float3 rid = which + float3(((float) xi) - 1, ((float) yi) - 1, 0) * o;
float3 r = p - period * rid;
float2 e = float2(
rand3(rid / 100.0),
rand3(rid / 100.0 + 1));
float cur_d = rorschach_map_sdf(r, e, period, center_randomization, speed);
which_tmp = cur_d < d ? rid : which;
d = min(d, cur_d);
}
which = which_tmp;
return d;
}
struct RorschachParams {
float4 color;
float count_x, count_y;
float mask;
float mask_invert;
float quantization;
float alpha_cutoff;
float center_randomization;
float speed;
};
RorschachPBR get_rorschach(float2 uv, RorschachParams p)
{
RorschachPBR result;
result.albedo = float4(0, 0, 0, 1);
float3 ro = float3(uv.x - 0.5, uv.y - 0.5, 0);
float3 rd = float3(0, 0, 1);
float3 which;
float3 period = float3(1 / (p.count_x+1), 1 / (p.count_y+1), 1);
float3 count = float3(p.count_x, p.count_y, 1);
float d = rorschach_map_dr(ro, period, count, p.center_randomization, p.speed, which);
d *= max(p.count_x + 1, p.count_y + 1);
d = 1 - d;
d = saturate(d);
// This also quantizes alpha. It isn't exactly intended, but it looks nice.
if (p.quantization > 0) {
d = round(d * p.quantization) / p.quantization;
}
float4 col = p.color * d;
result.albedo = lerp(0, col, d > p.alpha_cutoff);
float mask = p.mask;
mask = p.mask_invert ? 1 - mask : mask;
result.albedo *= mask;
return result;
}
float get_glitter(float2 uv, float3 worldPos, float3 centerCamPos,
float3 normal, float density, float amount, float speed,
float mask, float angle, float power)
{
// To increase amount: make count_{x,y} closer to each other
// To increase density: make both numbers larger
RorschachParams p;
p.color = 1;
p.count_x = density * amount;
p.count_y = density * rcp(amount);
p.mask = mask;
p.mask_invert = 0;
p.quantization = 1;
p.alpha_cutoff = 0.5;
p.center_randomization = 1;
p.speed = speed;
RorschachPBR result = get_rorschach(uv, p);
float glitter = result.albedo.r;
if (angle < 90) {
float ndotl = abs(dot(normal, normalize(centerCamPos - worldPos)));
float cutoff = cos((angle / 180) * 3.14159);
glitter *= saturate(pow(ndotl / cutoff, power));
}
if (_Glitter_Vector_Mask_Enabled) {
float3 mask_vector = _Glitter_Vector_Mask_Vector;
float power = _Glitter_Vector_Mask_Power;
float invert = _Glitter_Vector_Mask_Invert;
float vector_mask = dot(normal, normalize(mask_vector));
// Wrap ndotl
vector_mask = (vector_mask + 1) / 2;
vector_mask *= vector_mask;
vector_mask = max(vector_mask, 0);
vector_mask = invert ? 1 - vector_mask : vector_mask;
glitter *= pow(vector_mask, power);
}
return glitter;
/*
// A regular divide here causes flickering. The leading guess is that NVIDIA
// hardware implements the divide instruction slightly differently on
// different cores.
precise float idensity = rcp(density);
float glitter = rand2(floor(uv * density) * idensity);
float thresh = 1 - amount / 100;
glitter = lerp(0, glitter, glitter > thresh);
glitter = (glitter - thresh) / (1 - thresh);
float b = sin(_Time[2] * speed / 2 + glitter*100);
b = speed > 1E-6 ? b : 1;
glitter = max(glitter, 0)*max(b, 0);
glitter *= mask;
glitter = clamp(glitter, 0, 1);
if (angle < 90) {
float ndotl = abs(dot(normal, normalize(_WorldSpaceCameraPos.xyz - worldPos)));
float cutoff = cos((angle / 180) * 3.14159);
glitter *= saturate(pow(ndotl / cutoff, power));
}
return glitter;
*/
}
#endif // _GLITTER
float3 CreateBinormal(float3 normal, float3 tangent, float binormalSign) {
return cross(normal, tangent) * (binormalSign * unity_WorldTransformParams.w);
}
float2 matcap_distortion0(float2 matcap_uv) {
float3 qvec = float3(matcap_uv * 2 - 1, 0);
float t = _Time[0];
float e = .4;
float3 qaxis = normalize(float3(sin(t * 2.3) * e, sin(t * 2.9) * e * 1.2, 1));
float qtheta = t;
float4 quat = get_quaternion(qaxis, qtheta);
matcap_uv *= ((rotate_vector(qvec, quat) + 1) / 2).xy * 1.3;
return matcap_uv;
}
struct DecalParams {
float4 color;
texture2D tex;
float4 tex_texelsize;
float4 tex_st;
texture2D roughness_tex;
texture2D metallic_tex;
float emission_strength;
float angle;
bool do_roughness;
bool do_metallic;
float alpha_multiplier;
float round_alpha_multiplier;
float mask;
float uv_select;
float tiling_mode;
float base_color_mode;
float sdf_threshold;
float sdf_invert;
float sdf_softness;
float sdf_px_range;
bool domain_warping;
texture2D domain_warping_noise;
float domain_warping_strength;
float domain_warping_speed;
float domain_warping_octaves;
float domain_warping_scale;
};
void applyDecalImpl(
inout float4 albedo,
inout float3 decal_emission,
inout float roughness,
inout float metallic,
v2f i,
DecalParams p)
{
float2 d0_uv =
((get_uv_by_channel(i, p.uv_select) - 0.5) - p.tex_st.zw) * p.tex_st.xy + 0.5;
[branch]
if (abs(p.angle) > 1E-6) {
float theta = p.angle * 2.0 * 3.14159265;
float2x2 rot = float2x2(
cos(theta), -sin(theta),
sin(theta), cos(theta));
d0_uv = mul(rot, d0_uv - 0.5) + 0.5;
}
d0_uv = (p.tiling_mode == 0) ? saturate(d0_uv) : d0_uv;
float d0_uv_fwidth = -1;
[branch]
if (p.domain_warping) {
p.domain_warping_octaves = min(p.domain_warping_octaves, 10);
for (uint ii = 0; ii < p.domain_warping_octaves; ii++) {
float2 warping_speed_vector = normalize(float2(97, 101));
float2 noise = p.domain_warping_noise.SampleLevel(linear_repeat_s, d0_uv * p.domain_warping_scale + _Time[0] * p.domain_warping_speed * warping_speed_vector, 0);
d0_uv += noise * p.domain_warping_strength;
}
d0_uv_fwidth = length(fwidth(d0_uv));
}
float4 d0_c = 0;
[branch]
if (p.base_color_mode == 0) {
d0_c = p.tex.SampleBias(
linear_repeat_s,
d0_uv, _Global_Sample_Bias);
} else if (p.base_color_mode == 1) {
float sd = p.tex.SampleLevel(linear_repeat_s, d0_uv, 0);
sd = p.sdf_invert ? 1 - sd : sd;
float2 screen_tex_size = 1 / fwidth(d0_uv);
float2 cell_size_texels = p.tex_texelsize.zw;
float2 unit_range = p.sdf_px_range / cell_size_texels;
float screen_px_range = max(0.5 * dot(unit_range, screen_tex_size), p.sdf_px_range);
float screen_px_distance = screen_px_range * (sd - p.sdf_threshold);
float2 grid_res = p.tex_st.xy;
float smooth_range = (sqrt(2) / sqrt(screen_px_range)) * p.sdf_softness;
float op = smoothstep(-smooth_range, smooth_range, screen_px_distance);
d0_c = saturate(op);
// TODO mip-like filtering?
}
d0_c *= p.color;
d0_c.a *= p.round_alpha_multiplier ? round(p.alpha_multiplier) : p.alpha_multiplier;
// Manually apply tiling/clamping correction.
float d0_in_range = 1;
d0_in_range *= d0_uv.x > 0;
d0_in_range *= d0_uv.x < 1;
d0_in_range *= d0_uv.y > 0;
d0_in_range *= d0_uv.y < 1;
d0_in_range = (p.tiling_mode == 0) ? d0_in_range : 1;
d0_c *= d0_in_range;
d0_c *= p.mask;
albedo.rgb = lerp(albedo.rgb, d0_c.rgb, d0_c.a);
albedo.a = max(albedo.a, d0_c.a);
decal_emission = d0_c.rgb * p.emission_strength * d0_c.a + decal_emission * (1 - d0_c.a);
if (p.do_roughness) {
float4 d0_r = p.roughness_tex.SampleBias(linear_clamp_s, saturate(d0_uv), _Global_Sample_Bias);
d0_r *= d0_in_range;
roughness = lerp(roughness, d0_r, d0_r.a);
}
if (p.do_metallic) {
float4 d0_m = p.metallic_tex.SampleBias(linear_clamp_s, saturate(d0_uv), _Global_Sample_Bias);
d0_m *= d0_in_range;
metallic = lerp(metallic, d0_m, d0_m.a);
}
}
#define DECAL_PARAMS(n) \
MERGE(d,n,_params).do_roughness = false; \
MERGE(d,n,_params).do_metallic = false; \
MERGE(d,n,_params).mask = 1; \
MERGE(d,n,_params).color = MERGE(_Decal,n,_Color); \
MERGE(d,n,_params).tex = MERGE(_Decal,n,_BaseColor); \
MERGE(d,n,_params).tex_texelsize = MERGE(_Decal,n,_BaseColor_TexelSize); \
MERGE(d,n,_params).tex_st = MERGE(_Decal,n,_BaseColor_ST); \
MERGE(d,n,_params).roughness_tex = MERGE(_Decal,n,_Roughness); \
MERGE(d,n,_params).metallic_tex = MERGE(_Decal,n,_Metallic); \
MERGE(d,n,_params).emission_strength = MERGE(_Decal,n,_Emission_Strength); \
MERGE(d,n,_params).angle = MERGE(_Decal,n,_Angle); \
MERGE(d,n,_params).alpha_multiplier = MERGE(_Decal,n,_Alpha_Multiplier); \
MERGE(d,n,_params).round_alpha_multiplier = MERGE(_Decal,n,_Round_Alpha_Multiplier); \
MERGE(d,n,_params).uv_select = MERGE(_Decal,n,_UV_Select); \
MERGE(d,n,_params).tiling_mode = MERGE(_Decal,n,_Tiling_Mode); \
MERGE(d,n,_params).base_color_mode = MERGE(_Decal,n,_BaseColor_Mode); \
MERGE(d,n,_params).sdf_threshold = MERGE(_Decal,n,_SDF_Threshold); \
MERGE(d,n,_params).sdf_invert = MERGE(_Decal,n,_SDF_Invert); \
MERGE(d,n,_params).sdf_softness = MERGE(_Decal,n,_SDF_Softness); \
MERGE(d,n,_params).sdf_px_range = MERGE(_Decal,n,_SDF_Px_Range); \
MERGE(d,n,_params).domain_warping = MERGE(_Decal,n,_Domain_Warping_Enable_Static); \
MERGE(d,n,_params).domain_warping_noise = MERGE(_Decal,n,_Domain_Warping_Noise); \
MERGE(d,n,_params).domain_warping_strength = MERGE(_Decal,n,_Domain_Warping_Strength); \
MERGE(d,n,_params).domain_warping_speed = MERGE(_Decal,n,_Domain_Warping_Speed); \
MERGE(d,n,_params).domain_warping_octaves = MERGE(_Decal,n,_Domain_Warping_Octaves); \
MERGE(d,n,_params).domain_warping_scale = MERGE(_Decal,n,_Domain_Warping_Scale);
#define SETUP_DECAL_BASE(n) \
DecalParams MERGE(d,n,_params); \
DECAL_PARAMS(n)
#define SETUP_DECAL_ROUGHNESS(n) \
MERGE(d,n,_params).do_roughness = true;
#define SETUP_DECAL_METALLIC(n) \
MERGE(d,n,_params).do_metallic = true;
#define SETUP_DECAL_MASK(n) \
MERGE(d,n,_params).mask = MERGE(_Decal,n,_Mask).SampleLevel(linear_repeat_s, \
get_uv_by_channel(i, MERGE(_Decal,n,_UV_Select)), 0); \
MERGE(d,n,_params).mask = MERGE(_Decal,n,_Mask_Invert) ? 1.0 - MERGE(d,n,_params).mask : MERGE(d,n,_params).mask;
#define SETUP_DECAL_FINISH(n) \
applyDecalImpl(albedo, decal_emission, roughness, metallic, i, MERGE(d,n,_params));
void applyDecal(inout float4 albedo,
inout float roughness,
inout float metallic,
inout float3 decal_emission,
v2f i)
{
#if defined(_DECAL0)
SETUP_DECAL_BASE(0)
#if defined(_DECAL0_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(0)
#endif
#if defined(_DECAL0_METALLIC)
SETUP_DECAL_METALLIC(0)
#endif
#if defined(_DECAL0_MASK)
SETUP_DECAL_MASK(0)
#endif
SETUP_DECAL_FINISH(0)
#endif
#if defined(_DECAL1)
SETUP_DECAL_BASE(1)
#if defined(_DECAL1_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(1)
#endif
#if defined(_DECAL1_METALLIC)
SETUP_DECAL_METALLIC(1)
#endif
#if defined(_DECAL1_MASK)
SETUP_DECAL_MASK(1)
#endif
SETUP_DECAL_FINISH(1)
#endif
#if defined(_DECAL2)
SETUP_DECAL_BASE(2)
#if defined(_DECAL2_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(2)
#endif
#if defined(_DECAL2_METALLIC)
SETUP_DECAL_METALLIC(2)
#endif
#if defined(_DECAL2_MASK)
SETUP_DECAL_MASK(2)
#endif
SETUP_DECAL_FINISH(2)
#endif
#if defined(_DECAL3)
SETUP_DECAL_BASE(3)
#if defined(_DECAL3_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(3)
#endif
#if defined(_DECAL3_METALLIC)
SETUP_DECAL_METALLIC(3)
#endif
#if defined(_DECAL3_MASK)
SETUP_DECAL_MASK(3)
#endif
SETUP_DECAL_FINISH(3)
#endif
#if defined(_DECAL4)
SETUP_DECAL_BASE(4)
#if defined(_DECAL4_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(4)
#endif
#if defined(_DECAL4_METALLIC)
SETUP_DECAL_METALLIC(4)
#endif
#if defined(_DECAL4_MASK)
SETUP_DECAL_MASK(4)
#endif
SETUP_DECAL_FINISH(4)
#endif
#if defined(_DECAL5)
SETUP_DECAL_BASE(5)
#if defined(_DECAL5_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(5)
#endif
#if defined(_DECAL5_METALLIC)
SETUP_DECAL_METALLIC(5)
#endif
#if defined(_DECAL5_MASK)
SETUP_DECAL_MASK(5)
#endif
SETUP_DECAL_FINISH(5)
#endif
#if defined(_DECAL6)
SETUP_DECAL_BASE(6)
#if defined(_DECAL6_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(6)
#endif
#if defined(_DECAL6_METALLIC)
SETUP_DECAL_METALLIC(6)
#endif
#if defined(_DECAL6_MASK)
SETUP_DECAL_MASK(6)
#endif
SETUP_DECAL_FINISH(6)
#endif
#if defined(_DECAL7)
SETUP_DECAL_BASE(7)
#if defined(_DECAL7_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(7)
#endif
#if defined(_DECAL7_METALLIC)
SETUP_DECAL_METALLIC(7)
#endif
#if defined(_DECAL7_MASK)
SETUP_DECAL_MASK(7)
#endif
SETUP_DECAL_FINISH(7)
#endif
#if defined(_DECAL8)
SETUP_DECAL_BASE(8)
#if defined(_DECAL8_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(8)
#endif
#if defined(_DECAL8_METALLIC)
SETUP_DECAL_METALLIC(8)
#endif
#if defined(_DECAL8_MASK)
SETUP_DECAL_MASK(8)
#endif
SETUP_DECAL_FINISH(8)
#endif
#if defined(_DECAL9)
SETUP_DECAL_BASE(9)
#if defined(_DECAL9_ROUGHNESS)
SETUP_DECAL_ROUGHNESS(9)
#endif
#if defined(_DECAL9_METALLIC)
SETUP_DECAL_METALLIC(9)
#endif
#if defined(_DECAL9_MASK)
SETUP_DECAL_MASK(9)
#endif
SETUP_DECAL_FINISH(9)
#endif
}
#if defined(_PIXELLATE)
float2 pixellate_uv(int2 px_res, float2 uv)
{
return floor(uv * px_res) / px_res;
}
float4 pixellate_color(int2 px_res, float2 uv, float4 c)
{
float2 px_intra_uv = fmod(uv * px_res, 1.0);
float2 px_extra_uv = floor(uv * px_res) / px_res;
float2 px_uv = floor(uv * px_res) / px_res;
if (px_intra_uv.y > 0.1 && px_intra_uv.y < 0.9) {
if (px_intra_uv.x < 0.333) {
c.xyz = float3(1, 0, 0);
} else if (px_intra_uv.x < 0.666) {
c.yxz = float3(1, 0, 0);
} else {
c.zxy = float3(1, 0, 0);
}
c *= 3;
} else {
c = 0;
}
return c;
}
#endif
#if defined(_GIMMICK_EPILEPSY_MODE)
float4 map_color_epilepsy(float4 color) {
[branch]
if (_Gimmick_Epilepsy_Mode_Enable_Dynamic) {
color.rgb = saturate(color.rgb);
color.rgb = LRGBtoOKLCH(color.rgb);
color.rgb[0] = dmin(color.rgb[0], _Gimmick_Epilepsy_Mode_Luminance_Cutoff, _Gimmick_Epilepsy_Mode_Rolloff_Power);
color.rgb = OKLCHtoLRGB(color.rgb);
color.rgb = RGBtoHSV(color.rgb);
color.rgb[1] = dmin(color.rgb[1], _Gimmick_Epilepsy_Mode_Saturation_Cutoff, _Gimmick_Epilepsy_Mode_Rolloff_Power);
color.rgb = HSVtoRGB(color.rgb);
}
return color;
}
#define FILTER_COLOR(color) map_color_epilepsy(color)
#else
#define FILTER_COLOR(color) color
#endif
float ssfd(float2 uv, float scale, float max_fwidth, float2 uv_offset, texture3D noise)
{
//float uv_fw = fwidth(uv.x) + fwidth(uv.y);
// Original paper uses SVD instead of fwidth.
float2x2 M = float2x2(ddx(uv), ddy(uv));
float2x2 MtM = mul(transpose(M), M);
float trace = MtM[0][0] + MtM[1][1];
float det = determinant(MtM);
// Calculate eigenvalues using quadratic formula.
float tmp = sqrt(trace * trace - 4 * det);
float e1 = (trace + tmp) * 0.5;
float e2 = (trace - tmp) * 0.5;
float2 singular_values = sqrt(float2(e1, e2));