-
Notifications
You must be signed in to change notification settings - Fork 0
/
LossFunction.py
83 lines (70 loc) · 3.66 KB
/
LossFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn.functional as F
import torchvision
def vae_loss(x, x_reconstructed, z_mean, z_log_var, beta=1.0):
""" Original VAE loss function composed of reconstruction loss and KL divergence """
recon_loss = torch.sum((x - x_reconstructed) ** 2) / x.numel()
latent_loss = -0.5 * torch.sum(1 + z_log_var - z_mean.pow(2) - z_log_var.exp()) / x.numel()
loss = recon_loss + beta * latent_loss
return loss, recon_loss, latent_loss
class VGGPerceptualLoss(torch.nn.Module):
""" Copied entirely from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49 """
def __init__(self, resize=True):
super(VGGPerceptualLoss, self).__init__()
blocks = []
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
for bl in blocks:
for p in bl.parameters():
p.requires_grad = False
self.blocks = torch.nn.ModuleList(blocks)
self.transform = torch.nn.functional.interpolate
self.resize = resize
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, input, target, feature_layers=[0, 1, 2, 3], style_layers=[]):
if input.shape[1] != 3:
input = input.repeat(1, 3, 1, 1)
target = target.repeat(1, 3, 1, 1)
input = (input-self.mean) / self.std
target = (target-self.mean) / self.std
if self.resize:
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
loss = 0.0
x = input
y = target
for i, block in enumerate(self.blocks):
x = block(x)
y = block(y)
if i in feature_layers:
loss += torch.nn.functional.l1_loss(x, y)
if i in style_layers:
act_x = x.reshape(x.shape[0], x.shape[1], -1)
act_y = y.reshape(y.shape[0], y.shape[1], -1)
gram_x = act_x @ act_x.permute(0, 2, 1)
gram_y = act_y @ act_y.permute(0, 2, 1)
loss += torch.nn.functional.l1_loss(gram_x, gram_y)
return loss
class VAEComposedLoss(torch.nn.Module):
def __init__(self, kl_beta=1.5, vgg_weight=0.00, VGG_feature_layers=[0, 1, 2, 3],
VGG_style_layers=[], device='auto'):
super(VAEComposedLoss, self).__init__()
if device == 'auto':
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
self.kl_beta = kl_beta
self.vgg_weight = vgg_weight
self.feature_layers = VGG_feature_layers
self.style_layers = VGG_style_layers
self.vgg_loss = VGGPerceptualLoss(resize=False,).to(self.device)
def forward(self, x, x_reconstructed, z_mean, z_log_var):
_, recon_mse_loss, latent_loss = vae_loss(x, x_reconstructed, z_mean, z_log_var, beta=self.kl_beta)
vgg_loss = self.vgg_loss(x, x_reconstructed, feature_layers=self.feature_layers,
style_layers=self.style_layers)
recon_loss = recon_mse_loss + self.vgg_weight * vgg_loss
loss = recon_loss + self.kl_beta * latent_loss
return loss, vgg_loss, recon_mse_loss, latent_loss