-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
executable file
·178 lines (147 loc) · 7.14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
np.random.seed(1234)
import os
from gensim.models import word2vec
from gen import augment, bow_pseudodocs, lstm_pseudodocs
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint
import pickle
from sklearn.metrics import f1_score
from time import time
from gensim.models import KeyedVectors
def train_lstm(sequences, vocab_sz, truncate_len, save_path, word_embedding_dim=100, hidden_dim=100, embedding_matrix=None):
if embedding_matrix is not None:
trim_embedding = np.zeros((vocab_sz+1, word_embedding_dim))
trim_embedding[:-1,:] = embedding_matrix[:vocab_sz,:]
trim_embedding[-1,:] = np.average(embedding_matrix[vocab_sz:,:], axis=0)
else:
trim_embedding = None
if not os.path.exists(save_path):
os.makedirs(save_path)
from models import LSTMLanguageModel
model_name = save_path + '/model-final.h5'
model = LSTMLanguageModel(truncate_len-1, word_embedding_dim, vocab_sz+1, hidden_dim, trim_embedding)
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
if os.path.exists(model_name):
print(f'Loading model {model_name}...')
model.load_weights(model_name)
return model
x, y = sequences[:,:-1], sequences[:,-1]
checkpointer = ModelCheckpoint(filepath=save_path + '/model-{epoch:02d}.h5', save_weights_only=True, period=1)
model.fit(x, y, batch_size=256, epochs=25, verbose=1, callbacks=[checkpointer])
model.save_weights(model_name)
return model
def train_word2vec(sentence_matrix, vocabulary_inv, dataset_name, embedding_name, suffix='', mode='skipgram',
num_features=100, min_word_count=5, context=5, embedding_train=None):
model_dir = './' + dataset_name
model_name = 'embedding_'+embedding_name
model_name = os.path.join(model_dir, model_name)
if os.path.exists(model_name):
# embedding_model = word2vec.Word2Vec.load(model_name)
embedding_model = KeyedVectors.load_word2vec_format(model_name, binary = False)
print("Loading existing Word2Vec model {}...".format(model_name))
else:
num_workers = 15 # Number of threads to run in parallel
downsampling = 1e-3 # Downsample setting for frequent words
print('Training Word2Vec model...')
sentences = [[vocabulary_inv[w] for w in s] for s in sentence_matrix]
if mode == 'skipgram':
sg = 1
print('Model: skip-gram')
elif mode == 'cbow':
sg = 0
print('Model: CBOW')
embedding_model = word2vec.Word2Vec(sentences, workers=num_workers, sg=sg,
size=num_features, min_count=min_word_count,
window=context, sample=downsampling)
embedding_model.init_sims(replace=True)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print("Saving Word2Vec model {}".format(model_name))
embedding_model.save(model_name)
embedding_weights = {key: embedding_model[word] if word in embedding_model else
np.random.uniform(-0.25, 0.25, embedding_model.vector_size)
for key, word in vocabulary_inv.items()}
return embedding_weights
def train_class_embedding(x, vocabulary_inv, dataset_name, embedding_name, node, suffix='', mode='skipgram',
num_features=100, min_word_count=5, context=5):
print(f'Training embedding for node {node.name}')
embedding_weights = train_word2vec(x, vocabulary_inv, dataset_name, embedding_name, suffix, mode,
num_features, min_word_count, context)
embedding_mat = np.array([np.array(embedding_weights[word]) for word in vocabulary_inv])
node.embedding = embedding_mat
def proceed_level(x, sequences, wstc, args, pretrain_epochs, self_lr, decay, update_interval,
delta, class_tree, level, expand_num, background_array, doc_length, sent_length, len_avg,
len_std, num_doc, interp_weight, vocabulary_inv, common_words):
print(f"\n### Proceeding level {level} ###")
dataset = args.dataset
sup_source = args.sup_source
maxiter = 2
batch_size = args.batch_size
parents = class_tree.find_at_level(level)
parents_names = [parent.name for parent in parents]
print(f'Nodes: {parents_names}')
for parent in parents:
# initialize classifiers in hierarchy
print("\n### Input preparation ###")
if class_tree.embedding is None:
train_class_embedding(x, vocabulary_inv, dataset_name=args.dataset, embedding_name=args.embedding, node=class_tree)
parent.embedding = class_tree.embedding
wstc.instantiate(class_tree=parent)
save_dir = f'./results/{dataset}/{sup_source}/level_{level}'
if parent.model is not None:
print("\n### Phase 1: vMF distribution fitting & pseudo document generation ###")
if args.pseudo == "bow":
print("Pseudo documents generation (Method: Bag-of-words)...")
seed_docs, seed_label = bow_pseudodocs(parent.children, expand_num, background_array, doc_length, len_avg,
len_std, num_doc, interp_weight, vocabulary_inv, parent.embedding, save_dir)
elif args.pseudo == "lstm":
print("Pseudo documents generation (Method: LSTM language model)...")
lm = train_lstm(sequences, common_words, sent_length, f'./{dataset}/lm', embedding_matrix=class_tree.embedding)
seed_docs, seed_label = lstm_pseudodocs(parent, expand_num, doc_length, len_avg, sent_length, len_std, num_doc,
interp_weight, vocabulary_inv, lm, common_words, save_dir)
print("Finished pseudo documents generation.")
num_real_doc = len(seed_docs) / 5
if sup_source == 'docs':
real_seed_docs, real_seed_label = augment(x, parent.children, num_real_doc)
print(f'Labeled docs {len(real_seed_docs)} + Pseudo docs {len(seed_docs)}')
seed_docs = np.concatenate((seed_docs, real_seed_docs), axis=0)
seed_label = np.concatenate((seed_label, real_seed_label), axis=0)
perm = np.random.permutation(len(seed_label))
seed_docs = seed_docs[perm]
seed_label = seed_label[perm]
print('\n### Phase 2: pre-training with pseudo documents ###')
print(f'Pretraining node {parent.name}')
wstc.pretrain(x=seed_docs, pretrain_labels=seed_label, model=parent.model,
optimizer=SGD(lr=0.1, momentum=0.9),
epochs=pretrain_epochs, batch_size=batch_size,
save_dir=save_dir, suffix=parent.name)
global_classifier = wstc.ensemble_classifier(level)
wstc.model.append(global_classifier)
selftrain_optimizer = SGD(lr=self_lr, momentum=0.9, decay=decay)
wstc.compile(level, optimizer=selftrain_optimizer, loss='kld')
y_pred = wstc.fit(x, level=level, tol=delta, maxiter=1, batch_size=batch_size,
update_interval=update_interval, save_dir=save_dir)
return y_pred
def f1(y_true, y_pred):
assert len(y_true) == len(y_pred)
f1_macro = f1_score(y_true, y_pred, average='macro')
f1_micro = f1_score(y_true, y_pred, average='micro')
return f1_macro, f1_micro
def write_output(y_pred, perm, class_tree, write_path):
invperm = np.zeros(len(perm), dtype='int32')
for i,v in enumerate(perm):
invperm[v] = i
y_pred = y_pred[invperm]
label2name = {}
for i in range(class_tree.get_size()-1):
label2name[i] = class_tree.find(i).name
with open(os.path.join(write_path, 'out.txt'), 'w') as f:
for val in y_pred:
labels = np.nonzero(val)[0]
if len(labels) > 0:
out_str = '\t'.join([label2name[label] for label in labels])
else:
out_str = class_tree.name
f.write(out_str + '\n')
print("Classification results are written in {}".format(os.path.join(write_path, 'out.txt')))