-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_basic.py
307 lines (234 loc) · 11.2 KB
/
train_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Yiming Yang
# Date: 08/07/2022
# Email: [email protected]
# Description: Training script for ResUNet and UNet on Kaggle Dataset, Fluorscent Dataset, and CoNIC Dataset.
import os
import json
import torch
import numpy as np
from sklearn.model_selection import KFold
from datetime import datetime
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
from loss import pixel_accuracy, mIoU
from parameter import hyper_param
root_path = os.path.dirname(os.path.abspath(__file__))
date = datetime.now()
date = date.strftime('%c')
model_name = 'UNet_v2' #Res_UNet, UNet_v2
dataset_name = 'CoNIC' #Kaggle Flourscent CoNIC
config = {'model': model_name,
'num_epochs':hyper_param.num_epochs,
'loss':'weighted_ce_loss',
'lr':hyper_param.lr,
'model_save_folder':'scratch/model_weight/{}/{}'.format(dataset_name, model_name),
'log_save_folder':'scratch/train_log/{}/{}'.format(dataset_name, model_name),
'dataset': dataset_name,
'use_loss_weight': True,
'train/valid_split_rate': 0.1,
'batch_size': hyper_param.batch_size,
'optimizer': 'Adam'}
# Set up Paths for storing results
if not os.path.exists(config['model_save_folder']):
os.mkdir(config['model_save_folder'])
if not os.path.exists(config['log_save_folder']):
os.mkdir(config['log_save_folder'])
print('[INFO] Model Name: {}'.format(model_name))
#Set up Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('[INFO] Loading Device: {}'.format(device))
# Set up Dataset
if config['dataset'] == 'CoNIC':
from dataloader import CoNIC_DATASET
num_class = 6
print('[INFO] Building DataLoader for CoNIC Dataset')
image_file = '/home/y_yang/scratch/CoNIC_Data/conic_images.npy'
images = np.load(image_file).astype(np.float32)
mask_file = '/home/y_yang/scratch/CoNIC_Data/conic_masks.npy'
masks = np.load(mask_file)[:,:,:,1].astype(np.int32)
count_file = '/home/y_yang/scratch/CoNIC_Data/conic_counts.csv'
counts = np.genfromtxt(count_file, delimiter=',', skip_header = 1).astype(np.int32)
dataset = CoNIC_DATASET(images, masks, counts=counts, num_class=num_class)
if config['use_loss_weight']:
loss_weight_file = '/home/y_yang/scratch/CoNIC_Data/conic_loss_weights.npy'
loss_weight = np.load(loss_weight_file).astype(np.float32)
dataset.obtain_loss_weights(loss_weight)
else:
loss_weight = None
elif config['dataset'] == 'Kaggle':
from dataloader import Kaggle_DATASET
num_class = 1
print('[INFO] Building DataLoader for 2018 Data Science Bowl Dataset')
base_path = '/home/y_yang/scratch/2018_Data_Science_Bowl/stage1_train'
sample_sets = sorted(os.listdir(base_path))
counts = json.load(open('/home/y_yang/scratch/2018_Data_Science_Bowl/kaggle_counts.txt'))
dataset = Kaggle_DATASET(base_path, sample_sets, counts, config['use_loss_weight'])
elif config['dataset'] == 'Flourscent':
from dataloader import Flourscent_DATASET
num_class = 1
print('[INFO] Building DataLoader for Flourscent Microscopy Dataset')
base_path = '/home/y_yang/scratch/Flourscent_Data'
sample_sets = sorted(os.listdir('/home/y_yang/scratch/Flourscent_Data/all_images/images'))
counts_path = os.path.join(base_path, 'flourscent_counts.txt')
counts = json.load(open(counts_path))
dataset = Flourscent_DATASET(base_path, sample_sets, counts=counts, if_use_loss_weight=config['use_loss_weight'])
else:
raise NameError('[WARNING] Not Known DataSet Name')
# Set up Loss
if config['loss'] == 'weighted_ce_loss':
print('[INFO] Loss Function: Weighted Cross Entropy Loss')
from loss import Weighted_Pixel_Wise_CrossEntropyLoss
criterion = Weighted_Pixel_Wise_CrossEntropyLoss()
elif config['loss'] == 'weighted_dice_ce_loss':
print('[INFO] Loss Function: Weighted Dice + Cross Entropy Loss')
from loss import Weighted_Pixel_Wise_DiceCELoss
criterion = Weighted_Pixel_Wise_DiceCELoss()
elif config['loss'] == 'weighted_focal_loss':
print('[INFO] Loss Function: Weighted Focal Loss')
from loss import Weighted_Pixel_Wise_FocalLoss
criterion = Weighted_Pixel_Wise_FocalLoss()
else:
raise NameError('[Warning] Not Known Loss Function')
# Set up K-Folder
dataset_size = len(dataset)
indices = list(range(dataset_size))
kfold = KFold(n_splits=hyper_param.num_folds, shuffle=True)
print('[INFO] Start Training')
for fold, (train_ids, valid_ids) in enumerate(kfold.split(indices)):
print(f'[INFO] FOLD {fold}')
print(' ')
# Set up Model
if config['model'] == 'Res_UNet':
# print('[INFO] Create Model: Res_UNet')
from Model.Res_UNet import Res_UNet
model = Res_UNet(num_in_channels=3, num_out_channels=num_class+1, apply_final_layer=True)
elif config['model'] == 'UNet_v2':
# print('[INFO] Create Model: UNet_v2')
from Model.baseline_model import UNet
model = UNet(model_type='v2', num_in_channels=3, num_out_channels=num_class+1)
model.to(device)
# Set up optimizer
if config['optimizer'] == 'Adam':
# print('[INFO] Optimizer: Adam, Learning Rate: {}'.format(config['lr']))
from torch.optim import Adam
optimizer = Adam(model.parameters(), lr=config['lr'])
elif config['optimizer'] == 'SGD':
# print('[INFO] Optimizer: SGD, Learning Rate: {}'.format(config['lr']))
from torch.optim import SGD
optimizer = SGD(model.parameters(), lr=config['lr'])
scheduler = ReduceLROnPlateau(optimizer, factor=0.2, patience=2, cooldown=2)
train_sampler = SubsetRandomSampler(train_ids)
valid_sampler = SubsetRandomSampler(valid_ids)
train_loader = DataLoader(dataset, batch_size=config['batch_size'], sampler=train_sampler)
valid_loader = DataLoader(dataset, batch_size=config['batch_size'], sampler=valid_sampler)
# Save_Path
run_id = '{}_{}'.format(config['model'], fold)
log_save_path = os.path.join(config['log_save_folder'], run_id)
model_name = '{}_{}_{}_{}.pt'.format(config['model'], config['loss'], config['dataset'], fold)
model_save_path = os.path.join(config['model_save_folder'], model_name)
indices_path = '/home/y_yang/scratch/training_ids/{}/{}'.format(config['dataset'], config['model'])
if not os.path.exists(indices_path):
os.mkdir(indices_path)
indices_path = os.path.join(indices_path, run_id+'_{}'.format(config['dataset']))
if not os.path.exists(indices_path):
os.mkdir(indices_path)
log_indices = {'training':train_ids.tolist(), 'valid':valid_ids.tolist()}
json.dump(log_indices, open(os.path.join(indices_path, "train_valid_ids.txt"),'w'))
#Set up tensorboard
writer = SummaryWriter(log_save_path)
for epoch in range(config['num_epochs']):
print(' ')
print('[INFO] {}th Epoch Start'.format(epoch+1))
# ----------------------------- Training ------------------------------------ #
model.train()
train_iou_score = 0
train_accuracy = 0
train_loss = 0
train_R2 = 0
train_mae = 0
for package in train_loader:
data = package[0].to(device)
target = package[1].to(device)
count = package[-1]
if len(package) == 3:
loss_weight = None
elif len(package) == 4:
loss_weight = package[2].to(device)
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
loss = criterion(preds=output, targets=target, pixelwise_weights=loss_weight)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
iou = mIoU(output, target, n_classes=num_class)
acc = pixel_accuracy(output, target)
# mae, r2 = Compute_MAE_R2(output, count)
train_loss += loss.item()
train_iou_score += iou
train_accuracy += acc
# train_R2 += r2
# train_mae += mae
# ----------------------------- Validting ------------------------------------ #
model.eval()
valid_iou_score = 0
valid_accuracy = 0
valid_loss = 0
valid_R2 = 0
valid_mae = 0
for package in valid_loader:
data = package[0].to(device)
target = package[1].to(device)
count = package[-1]
if len(package) == 3:
loss_weight = None
elif len(package) == 4:
loss_weight = package[2].to(device)
with torch.no_grad():
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
loss = criterion(output, target, loss_weight)
iou = mIoU(output, target, n_classes=num_class)
acc = pixel_accuracy(output, target)
# mae, r2 = Compute_MAE_R2(output, count)
valid_loss += loss
valid_iou_score += iou
valid_accuracy += acc
# valid_R2 += r2
# valid_mae += mae
scheduler.step(valid_loss)
# -------------------------------- Logging Stats ------------------------------ #
train_loss = train_loss / train_loader.__len__()
train_iou_score = train_iou_score / train_loader.__len__()
train_accuracy = train_accuracy / train_loader.__len__()
# train_R2 = train_R2 / train_loader.__len__()
# train_mae = train_mae / train_loader.__len__()
valid_loss = valid_loss / valid_loader.__len__()
valid_iou_score = valid_iou_score / valid_loader.__len__()
valid_accuracy = valid_accuracy / valid_loader.__len__()
# valid_R2 = valid_R2 / valid_loader.__len__()
# valid_mae = valid_mae / valid_loader.__len__()
writer.add_scalar('Loss/Train', train_loss, epoch)
writer.add_scalar('mIoU/Train', train_iou_score, epoch)
writer.add_scalar('Accuracy/Train', train_accuracy, epoch)
# writer.add_scalar('MAE/Train', train_mae, epoch)
# writer.add_scalar('R2/Train', train_R2, epoch)
writer.add_scalar('Loss/Test', valid_loss, epoch)
writer.add_scalar('mIoU/Test', valid_iou_score, epoch)
writer.add_scalar('Accuracy/Test', valid_accuracy, epoch)
# writer.add_scalar('MAE/Test', valid_mae, epoch)
# writer.add_scalar('R2/Test', valid_R2, epoch)
# scheduler.step(valid_loss)
# save model if validation loss has decreased
print('[INFO] Validation loss: {:.5f}.'.format(valid_loss))
print('[INFO] Validation mIOU: {:.5f}'.format(valid_iou_score))
print('[INFO] Validation Accuracy: {:.5f}'.format(valid_accuracy))
# print('[INFO] Validation MAE: {:.5f}'.format(valid_mae))
# print('[INFO] Validation R2: {:.5f}'.format(valid_R2))
torch.save(model.state_dict(), model_save_path)
print(' ')