forked from PushedChris/NIRS_Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnirs_main.m
185 lines (180 loc) · 5.01 KB
/
nirs_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
% Version 1.0, Feb.19 2020
% clear;
data = load('convert.mat');
nirs_data = data.nirs_data;
%% 下列处理均以脱氧血红蛋白为例
%% 数据预处理 横向版
ch = 57;
%创建下采样后的数据阵
oxyData = zeros(length(resample(nirs_data.oxyData(:,1),100,167)),ch);
for i = 1 : ch
oxyData(:,i) = resample(nirs_data.oxyData(:,i),100,167);
end
%低通滤波
hd = lowpass5;
for i = 1 : ch
oxyData(:,i) = filter(hd,oxyData(:,i));
end
%基本方法去基线漂移
for i = 1 : ch
oxyData(:,i) = detrend(oxyData(:,i));
end
%小波方法去基线漂移
for i = 1 : ch
oxyData(:,i) = DeBaseline_Wavelet(oxyData(:,i));
end
%% 数据预处理 纵向版
% %读取数据
% oxyData = nirs_data.oxyData(:,2);
% dxyData = nirs_data.dxyData(:,2);
% tHbData = nirs_data.tHbData(:,2);
% figure(1),title('原始数据');
% plot(oxyData,'r'),hold on,
% plot(dxyData,'b'),hold on,
% plot(tHbData,'g'),hold on,
% %下采样
% oxyData=resample(oxyData,100,167);
% dxyData=resample(dxyData,100,167);
% tHbData=resample(tHbData,100,167);
% oxyData = filter(hd,oxyData);
% dxyData = filter(hd,dxyData);
% tHbData = filter(hd,tHbData);
%
% figure(2),
% subplot(311);
% plot(oxyData,'r'),hold on,
% plot(dxyData,'b'),hold on,
% plot(tHbData,'g');
% title('低通滤波后的数据');
% axis([0,length(oxyData),-0.02,0.02]);
%
% oxyData1 = detrend(oxyData);
% dxyData1 = detrend(dxyData);
% tHbData1 = detrend(tHbData);
% subplot(312);
% axis([0,length(oxyData),-0.02,0.02]);
% plot(oxyData1,'r'),hold on,
% plot(dxyData1,'b'),hold on,
% plot(tHbData1,'g');
% title('基本方法去基线漂移'),
% axis([0,length(oxyData),-0.02,0.02]);
%
% oxyData = DeBaseline_Wavelet(oxyData);
% dxyData = DeBaseline_Wavelet(dxyData);
% tHbData = DeBaseline_Wavelet(tHbData);
% subplot(313);
% plot(oxyData,'r'),hold on,
% plot(dxyData,'b'),hold on,
% plot(tHbData,'g');
% title('小波方法去基线漂移');
% axis([0,length(oxyData),-0.02,0.02]);
%% 脑电地形图实验 + ICA 激活功能分析
% display = nirs_data.oxyData(:,1);
% for i = 2 : 57
% display = [display ; nirs_data.oxyData(:,i)];
% end
% topoplotEEG(display,'bp1.txt','electrodes','labels','maplimits',[0,0.1]);%yy是输入的数据,yy是行向量
% % ICA
% level = 57; %ICA分层数,最高设为通道数
% fs = 10;
% % [Zica,A,W] = fastica(nirs_data.oxyData,'numOfIC', level);
% figure(1),plot_ICAs(W,fs);
% display = W(:,1);
% for i = 2 : 57
% display = [display ; W(:,i)];
% end
% figure(2),topoplotEEG(display,'bp1.txt','electrodes','labels','maplimits',[0,0.1]);%yy是输入的数据,yy是行向量
%% 特征分析 单通道
oxyData2 = oxyData(:,2);
% %小波分析
% fs = 10;
% len = length(oxyData2);
% t = 1:len;
% [cfs,f] = cwt(oxyData2,'bump',fs);
% cwt(oxyData2);
% % pcolor(t,f,abs(cfs));shading interp
% %功率谱分析
% Fs = 10;
% xn = oxyData2;
% nfft=1024;
%
% window=boxcar(100); %矩形窗
% window1=hamming(100); %海明窗
% window2=blackman(100); %blackman窗
% noverlap=20; %数据无重叠
% range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
% [Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
% [Pxx1,f1]=pwelch(xn,window1,noverlap,nfft,Fs,range);
% [Pxx2,f2]=pwelch(xn,window2,noverlap,nfft,Fs,range);
% plot_Pxx=10*log10(Pxx);
% plot_Pxx1=10*log10(Pxx1);
% plot_Pxx2=10*log10(Pxx2);
%
% subplot(311);
% plot(f,plot_Pxx);
% title('矩形窗');
% subplot(312);
% plot(f1,plot_Pxx1);
% title('海明窗');
% subplot(313);
% plot(f2,plot_Pxx2);
% title('blackman窗');
% %短时傅里叶分析
% win_sz = 128;
% % han_win = hanning(win_sz); % 选择海明窗
% kaiser_win = kaiser(win_sz);
% nfft = win_sz;
% % nooverlap = win_sz - 1;
% nooverlap = 20;
% [S, F, T] = spectrogram(oxyData2, window, nooverlap, nfft, fs);
% figure(),
% imagesc(T, F, log10(abs(S)))
% set(gca, 'YDir', 'normal')
% xlabel('Time (secs)')
% ylabel('Freq (Hz)')
% title('short time fourier transform spectrum')
%% 特征提取 纵向
%% 非线性特征提取
% % 近似熵算法测试代码
% m = 2; % 模式维数
% r_factor = 0.2; % 相似容限系数
% % 周期信号的信号近似熵值
% signal = oxyData;
% ApEn_value_x = ApEn(signal(100:200),m,r_factor) % 信号近似熵值
% % 周期信号叠加白噪声的信号近似熵值
% signal = f;
% ApEn_value_f = ApEn(signal(100:200),m,r_factor) % 信号近似熵值
% %样本熵算法测试代码
% r_factor = 0.2 * std(oxyData); % 阈值大小
% signal = oxyData;
% SampEn_value_x = SampEn(signal(100:200),m,r_factor) % 信号样本熵值
% % 周期信号叠加白噪声的信号近似熵值
% signal = f;
% SampEn_value_f = SampEn(signal(100:200),m,r_factor) % 信号样本熵值
%多尺度熵运算
% mse - multi-scale entropy
% sf - scale factor corresponding to mse
% signal = oxyData;
% [mse,sf] = MSE_Costa2005(signal,20,m,std(signal)*0.15);
% signal = f;
% [mse,sf] = MSE_Costa2005(signal,20,m,std(signal)*0.15);
% % Plot mse
% figure, set(gcf,'Color',[1 1 1]), hold on, pp = []; labfull = {};
% set(gca,'FontSize',12)
% pp = plot(sf,mse,'-','Color',[0,0,0],'LineWidth',2);
% labfull = ['White' ' noise (1/f^{' num2str(0) '})'];
% ylim([0 3])
% xlabel('Scale')
% ylabel('SampEn')
% title('Multi-scale entropy')
% legend(pp,labfull)
% legend('boxoff')
%% 统计特征提取
% % 均值
% mean_val = mean(oxyData);
% % 标准差
% std_val = std(oxyData);
% % 偏度 , >0 右偏态
% skewness_val = skewness(oxyData);
% % 峭度 ,>0 尖峰态 正态分布峰度 = 0
% kurtosis_val = kurtosis(oxyData);