-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathengine.py
295 lines (230 loc) · 9.71 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Original copyright Amazon.com, Inc. or its affiliates, under CC-BY-NC-4.0 License.
# Modifications Copyright Lang Huang ([email protected]). All Rights Reserved.
# SPDX-License-Identifier: CC-BY-NC-4.0
import time
from datetime import timedelta
import numpy as np
try:
import faiss
except ImportError:
pass
import torch
import torch.nn as nn
from classy_vision.generic.distributed_util import is_distributed_training_run
from utils import utils
from utils.dist_utils import all_reduce_mean
def validate(val_loader, model, criterion, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
progress = utils.ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target, _) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
if is_distributed_training_run():
# torch.distributed.barrier()
acc1 = all_reduce_mean(acc1)
acc5 = all_reduce_mean(acc5)
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f} Loss {loss.avg:.4f}'
.format(top1=top1, top5=top5, loss=losses))
return top1.avg
def ss_validate(val_loader_base, val_loader_query, model, args):
print("start KNN evaluation with key size={} and query size={}".format(
len(val_loader_base.dataset.samples), len(val_loader_query.dataset.samples)))
batch_time_key = utils.AverageMeter('Time', ':6.3f')
batch_time_query = utils.AverageMeter('Time', ':6.3f')
# switch to evaluate mode
model.eval()
feats_base = []
target_base = []
feats_query = []
target_query = []
with torch.no_grad():
start = time.time()
end = time.time()
# Memory features
for i, (images, target, _) in enumerate(val_loader_base):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute features
feats = model(images)
# L2 normalization
feats = nn.functional.normalize(feats, dim=1)
feats_base.append(feats)
target_base.append(target)
# measure elapsed time
batch_time_key.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Extracting key features: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
i, len(val_loader_base), batch_time=batch_time_key))
end = time.time()
for i, (images, target, _) in enumerate(val_loader_query):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute features
feats = model(images)
# L2 normalization
feats = nn.functional.normalize(feats, dim=1)
feats_query.append(feats)
target_query.append(target)
# measure elapsed time
batch_time_query.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Extracting query features: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
i, len(val_loader_query), batch_time=batch_time_query))
feats_base = torch.cat(feats_base, dim=0)
target_base = torch.cat(target_base, dim=0)
feats_query = torch.cat(feats_query, dim=0)
target_query = torch.cat(target_query, dim=0)
feats_base = feats_base.detach().cpu().numpy()
target_base = target_base.detach().cpu().numpy()
feats_query = feats_query.detach().cpu().numpy()
target_query = target_query.detach().cpu().numpy()
feat_time = time.time() - start
# KNN search
index = faiss.IndexFlatL2(feats_base.shape[1])
index.add(feats_base)
D, I = index.search(feats_query, args.num_nn)
preds = np.array([np.bincount(target_base[n]).argmax() for n in I])
NN_acc = (preds == target_query).sum() / len(target_query) * 100.0
knn_time = time.time() - start - feat_time
print("finished KNN evaluation, feature time: {}, knn time: {}".format(
timedelta(seconds=feat_time), timedelta(seconds=knn_time)))
print(' * NN Acc@1 {:.3f}'.format(NN_acc))
return NN_acc
def ss_face_validate(val_loader, model, args, threshold=0.6):
"""
https://github.com/sakshamjindal/Face-Matching
"""
batch_time = utils.AverageMeter('Time', ':6.3f')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
progress = utils.ProgressMeter(
len(val_loader),
[batch_time, top1],
prefix='Test: ')
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
# switch to evaluate mode
model.eval()
model = model.module if hasattr(model, 'module') else model
with torch.no_grad():
end = time.time()
for i, (img1, img2, target) in enumerate(val_loader):
img1 = img1.cuda(non_blocking=True)
img2 = img2.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
embedding1, _, _ = model.online_net(img1)
embedding2, _, _ = model.online_net(img2)
embedding1 = embedding1.squeeze(-1)
embedding2 = embedding2.squeeze(-1)
assert embedding1.ndim == 2
# measure accuracy and record loss
cosine_similarity = cos(embedding1, embedding2)
pred = (cosine_similarity >= threshold).to(torch.float32)
acc1 = (pred == target).float().sum() * 100.0 / (target.shape[0])
top1.update(acc1.item(), img1.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f}'
.format(top1=top1))
return top1.avg
def validate_multilabel(val_loader, model, criterion, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
progress = utils.ProgressMeter(
len(val_loader),
[batch_time, losses, top1],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target, _) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True).float()
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1 = utils.accuracy_multilabel(torch.sigmoid(output), target)
if is_distributed_training_run():
# torch.distributed.barrier()
acc1 = all_reduce_mean(acc1)
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Loss {loss.avg:.4f}'
.format(top1=top1, loss=losses))
return top1.avg
if __name__ == '__main__':
import backbone as backbone_models
from models import get_model
import torchvision
import torchvision.transforms as transforms
model_func = get_model("LEWELB_EMAN")
norm_layer = None
model = model_func(
backbone_models.__dict__["resnet50_encoder"],
dim=256,
m=0.996,
hid_dim=4096,
norm_layer=norm_layer,
num_neck_mlp=2,
scale=1.,
l2_norm=True,
num_heads=4,
loss_weight=0.5,
mask_type="max"
)
print(model)
model.cuda()
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
# transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
])
val_dataset = torchvision.datasets.LFWPairs(root="../data/lfw", split="test",
transform=transform_test, download=True)
print(set(val_dataset.targets))
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=8, shuffle=False, num_workers=8, pin_memory=True, persistent_workers=True)
ss_face_validate(val_loader, model, None)