-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlaunch.py
95 lines (81 loc) · 3.09 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/python3
import os
import sys
import socket
import random
import argparse
import subprocess
import torch
def _find_free_port():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
return port
def _get_rand_port():
return random.randrange(20000, 60000)
def init_workdir():
ROOT = os.path.dirname(os.path.abspath(__file__))
os.chdir(ROOT)
sys.path.insert(0, ROOT)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Launcher')
parser.add_argument('--launch', type=str, default='tools/train.py',
help='Specify launcher script.')
parser.add_argument('--dist', type=int, default=1,
help='Whether start by torch.distributed.launch.')
parser.add_argument('--np', type=int, default=-1,
help='number of processes per node.')
parser.add_argument('--nn', type=int, default=1,
help='number of workers in total.')
parser.add_argument('--port', type=int, default=-1,
help='master port for communication')
parser.add_argument('--nr', type=int, default=0,
help='node rank.')
parser.add_argument('--master_address', '-ma', type=str, default="127.0.0.1")
parser.add_argument('--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args, other_args = parser.parse_known_args()
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
cmd = f"CUDA_VISIBLE_DEVICES={args.device} "
else:
cmd = f""
init_workdir()
master_address = args.master_address
num_processes_per_worker = torch.cuda.device_count() if args.np < 0 else args.np
num_workers = args.nn
node_rank = args.nr
if args.port > 0:
master_port = args.port
elif num_workers == 1:
master_port = _find_free_port()
else:
master_port = _get_rand_port()
if args.dist >= 1:
print(f'Start {args.launch} by torch.distributed.launch with port {master_port}!', flush=True)
os.environ['NPROC_PER_NODE'] = str(num_processes_per_worker)
cmd += f'python3 -m torch.distributed.launch \
--nproc_per_node={num_processes_per_worker} \
--nnodes={num_workers} \
--node_rank={node_rank} \
--master_addr={master_address} \
--master_port={master_port} \
{args.launch}'
else:
print(f'Start {args.launch}!', flush=True)
cmd += f'python3 -u {args.launch}'
for argv in other_args:
cmd += f' {argv}'
with open('./log.txt', 'wb') as f:
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
while True:
text = proc.stdout.readline()
f.write(text)
f.flush()
sys.stdout.buffer.write(text)
sys.stdout.buffer.flush()
exit_code = proc.poll()
if exit_code is not None:
break
sys.exit(exit_code)